import streamlit as st import os import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.preprocessing import image st.set_page_config(page_title='Fast Food Classification Dataset Analysis', layout='wide', initial_sidebar_state='expanded') def run(): # Buat Title st.title('EDA on Fast Food Classification') # Buat Deskripsi st.subheader('Written by Franciscus Andrew Sunanda, FTDS-RMT-018') st.markdown('---') st.write('Dataset : Fast Food Classification') st.write('Objective : To create a model that can predict the type of a fast food based on image') st.markdown('---') # Define batch size and image size batch_size = 256 img_size = (64, 64) # Define paths to the data folders script_dir = os.path.dirname(os.path.abspath(__file__)) train_path = os.path.join(script_dir, 'food', 'Train') valid_path = os.path.join(script_dir, 'food', 'Valid') test_path = os.path.join(script_dir, 'food', 'Test') # Create data generators for training, validation, and testing train_datagen = ImageDataGenerator( rescale=1./255, horizontal_flip=True ) valid_datagen = ImageDataGenerator( rescale=1./255 ) test_datagen = ImageDataGenerator( rescale=1./255 ) train_generator = train_datagen.flow_from_directory( train_path, target_size=img_size, batch_size=batch_size, class_mode='categorical' ) valid_generator = valid_datagen.flow_from_directory( valid_path, target_size=img_size, batch_size=batch_size, class_mode='categorical' ) test_generator = test_datagen.flow_from_directory( test_path, target_size=img_size, batch_size=batch_size, class_mode='categorical' ) st.write('## Showing Random Samples') class_names = list(train_generator.class_indices.keys()) train_classes = pd.Series(train_generator.classes) test_classes = pd.Series(test_generator.classes) valid_classes = pd.Series(valid_generator.classes) # Plot some samples from each class fig, ax = plt.subplots(nrows=2, ncols=5, figsize=(10, 6), subplot_kw={'xticks': [], 'yticks': []}) for i, axi in enumerate(ax.flat): img = plt.imread(f'{train_path}/{class_names[i]}/{os.listdir(train_path+"/"+class_names[i])[0]}') axi.imshow(img) axi.set_title(class_names[i]) plt.tight_layout() st.pyplot(fig) st.markdown('---') st.write('## Balance Classification') # Create a pandas dataframe to show the distribution of classes in train, test, and validation data df = pd.concat([train_classes.value_counts(), test_classes.value_counts(), valid_classes.value_counts()], axis=1) df.columns = ['Training Data', 'Test Data', 'Validation Data'] df.index = class_names fig, ax = plt.subplots(figsize=(12, 6)) df.plot(kind='bar', stacked=False, ax=ax, width=0.8) plt.xlabel('Class') plt.ylabel('Data Distribution') plt.title('Data Distribution for each class') plt.xticks(rotation=45, ha='right') st.pyplot(fig) st.markdown('---') st.write('## Mean Pixel Value') # Plot the mean of pixel mean of each channel for each class (unstacked bar chart) means = [] for i in range(len(class_names)): class_name = class_names[i] img_path = os.path.join(train_path, class_name, os.listdir(os.path.join(train_path, class_name))[0]) img = image.load_img(img_path, target_size=img_size) img_array = image.img_to_array(img) means.append(np.mean(img_array, axis=(0, 1))) means_df = pd.DataFrame(means, columns=['Red', 'Green', 'Blue']) means_df.index = class_names fig, ax = plt.subplots(figsize=(12, 6)) means_df.plot(kind='bar', stacked=False, ax=ax, width=0.8) plt.xlabel('Class') plt.ylabel('Mean pixel value') plt.title('Mean pixel value of each channel for each class') plt.xticks(rotation=45, ha='right') st.pyplot(fig) st.markdown('---') if __name__ == '__main__': run()