andrewzamp commited on
Commit
0c48d27
·
1 Parent(s): 5ebfe0b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -2
app.py CHANGED
@@ -7,9 +7,65 @@ from tensorflow.keras.preprocessing.image import load_img, img_to_array # type:
7
  from tensorflow.keras.applications.convnext import preprocess_input # type: ignore
8
  import gradio as gr
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  # Define the Gradio interface
11
  interface = gr.Interface(
12
- fn=print('HIIIII'), # Function to be called for predictions
13
  inputs=gr.Image(type="pil"), # Input type: Image (PIL format)
14
  outputs="html", # Output type: HTML for formatting
15
  title="Amazon arboreal species classification",
@@ -17,4 +73,4 @@ interface = gr.Interface(
17
  )
18
 
19
  # Launch the Gradio interface
20
- interface.launch()
 
7
  from tensorflow.keras.applications.convnext import preprocess_input # type: ignore
8
  import gradio as gr
9
 
10
+ # Load the model
11
+ model = load_model('models/ConvNeXtBase_80_tresh_spp.tf')
12
+
13
+ # Load the taxonomy .csv
14
+ taxo_df = pd.read_csv('taxonomy/taxonomy_mapping.csv', sep=';')
15
+ taxo_df['species'] = taxo_df['species'].str.replace('_', ' ')
16
+
17
+ # Extract unique class names from the 'species' column
18
+ class_names = sorted(taxo_df['species'].unique())
19
+
20
+ # Function to map predicted class index to class name
21
+ def get_class_name(predicted_class):
22
+ return class_names[predicted_class]
23
+
24
+ # Function to load and preprocess the image
25
+ def load_and_preprocess_image(image, target_size=(224, 224)):
26
+ # Resize the image (assuming image is a PIL image)
27
+ img_array = img_to_array(image.resize(target_size))
28
+ # Expand the dimensions of the array to match model input
29
+ img_array = np.expand_dims(img_array, axis=0)
30
+ # Preprocess using the appropriate function (for example, ResNet50)
31
+ img_array = preprocess_input(img_array)
32
+ return img_array
33
+
34
+ # Function to make predictions
35
+ def make_prediction(image):
36
+ # Preprocess the image
37
+ img_array = load_and_preprocess_image(image)
38
+ # Make a prediction
39
+ prediction = model.predict(img_array)
40
+
41
+ # Get the top 5 predictions
42
+ top_indices = np.argsort(prediction[0])[-5:][::-1] # Get indices of top 5 classes
43
+
44
+ # Get predicted class and common name for the top prediction
45
+ predicted_class_index = np.argmax(prediction)
46
+ predicted_class_name = get_class_name(predicted_class_index)
47
+ predicted_common_name = taxo_df[taxo_df['species'] == predicted_class_name]['common_name'].values[0] # Get common name
48
+ confidence = prediction[0][predicted_class_index] * 100 # Confidence of the predicted class
49
+
50
+ # Create output text with HTML formatting
51
+ output_text = f"<h1 style='font-weight: bold;'><span style='font-style: italic;'>{predicted_class_name}</span> ({predicted_common_name})</h1>" # Large bold for predicted class, italic for class name
52
+ output_text += "<h4 style='font-weight: bold; font-size: 1.2em;'>Top 5 Predictions:</h4>" # Bold and larger font for predictions
53
+
54
+ for i in top_indices:
55
+ class_name = get_class_name(i)
56
+ common_name = taxo_df[taxo_df['species'] == class_name]['common_name'].values[0] # Get common name from CSV
57
+ confidence_percentage = prediction[0][i] * 100
58
+
59
+ # Format the output with space between class name and common name
60
+ output_text += f"<div style='display: flex; justify-content: space-between;'>" \
61
+ f"<span style='font-style: italic;'>{class_name}</span>&nbsp;(<span>{common_name}</span>)" \
62
+ f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
63
+
64
+ return output_text
65
+
66
  # Define the Gradio interface
67
  interface = gr.Interface(
68
+ fn=make_prediction, # Function to be called for predictions
69
  inputs=gr.Image(type="pil"), # Input type: Image (PIL format)
70
  outputs="html", # Output type: HTML for formatting
71
  title="Amazon arboreal species classification",
 
73
  )
74
 
75
  # Launch the Gradio interface
76
+ interface.launch()