Spaces:
Sleeping
Sleeping
Commit
·
2759d0e
1
Parent(s):
3927ff5
Update app.py
Browse files
app.py
CHANGED
@@ -21,8 +21,8 @@ def get_class_name(predicted_class, taxonomic_level):
|
|
21 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
22 |
return unique_labels[predicted_class]
|
23 |
|
24 |
-
# Function to aggregate predictions to
|
25 |
-
def aggregate_predictions(predicted_probs, taxonomic_level):
|
26 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
27 |
aggregated_predictions = np.zeros((predicted_probs.shape[0], len(unique_labels)))
|
28 |
|
@@ -31,7 +31,7 @@ def aggregate_predictions(predicted_probs, taxonomic_level):
|
|
31 |
higher_level = row[taxonomic_level]
|
32 |
|
33 |
species_index = class_names.index(species) # Index of the species in the prediction array
|
34 |
-
higher_level_index = unique_labels.index(higher_level)
|
35 |
|
36 |
aggregated_predictions[:, higher_level_index] += predicted_probs[:, species_index]
|
37 |
|
@@ -47,24 +47,22 @@ def load_and_preprocess_image(image, target_size=(224, 224)):
|
|
47 |
img_array = preprocess_input(img_array)
|
48 |
return img_array
|
49 |
|
50 |
-
# Function to make predictions
|
51 |
def make_prediction(image, taxonomic_level):
|
52 |
# Preprocess the image
|
53 |
img_array = load_and_preprocess_image(image)
|
54 |
-
# Make a prediction
|
55 |
prediction = model.predict(img_array)
|
56 |
|
57 |
-
# Aggregate predictions
|
58 |
-
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_level)
|
59 |
|
60 |
# Get the top 5 predictions
|
61 |
-
top_indices = np.argsort(aggregated_predictions[0])[-5:][::-1]
|
62 |
|
63 |
-
# Get
|
64 |
predicted_class_index = np.argmax(aggregated_predictions)
|
65 |
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
66 |
-
|
67 |
-
# Get common name for the top predicted class
|
68 |
predicted_common_name = taxo_df[taxo_df[taxonomic_level] == predicted_class_name]['common_name'].values[0]
|
69 |
confidence = aggregated_predictions[0][predicted_class_index] * 100 # Confidence of the predicted class
|
70 |
|
@@ -76,10 +74,11 @@ def make_prediction(image, taxonomic_level):
|
|
76 |
class_name = aggregated_class_labels[i]
|
77 |
common_name = taxo_df[taxo_df[taxonomic_level] == class_name]['common_name'].values[0]
|
78 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
|
|
79 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
80 |
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
81 |
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
82 |
-
|
83 |
return output_text
|
84 |
|
85 |
# Define the Gradio interface
|
@@ -88,7 +87,7 @@ interface = gr.Interface(
|
|
88 |
inputs=[gr.Image(type="pil"), # Input type: Image (PIL format)
|
89 |
gr.Dropdown(choices=taxonomic_levels, label="Taxonomic level", value="species")], # Use 'value' instead of 'default'
|
90 |
outputs="html", # Output type: HTML for formatting
|
91 |
-
title="Amazon
|
92 |
description="Upload an image and select the taxonomic level to classify the species."
|
93 |
)
|
94 |
|
|
|
21 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
22 |
return unique_labels[predicted_class]
|
23 |
|
24 |
+
# Function to aggregate predictions to a higher taxonomic level
|
25 |
+
def aggregate_predictions(predicted_probs, taxonomic_level, class_names):
|
26 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
27 |
aggregated_predictions = np.zeros((predicted_probs.shape[0], len(unique_labels)))
|
28 |
|
|
|
31 |
higher_level = row[taxonomic_level]
|
32 |
|
33 |
species_index = class_names.index(species) # Index of the species in the prediction array
|
34 |
+
higher_level_index = unique_labels.index(higher_level)
|
35 |
|
36 |
aggregated_predictions[:, higher_level_index] += predicted_probs[:, species_index]
|
37 |
|
|
|
47 |
img_array = preprocess_input(img_array)
|
48 |
return img_array
|
49 |
|
50 |
+
# Function to make predictions
|
51 |
def make_prediction(image, taxonomic_level):
|
52 |
# Preprocess the image
|
53 |
img_array = load_and_preprocess_image(image)
|
54 |
+
# Make a prediction
|
55 |
prediction = model.predict(img_array)
|
56 |
|
57 |
+
# Aggregate predictions based on the selected taxonomic level
|
58 |
+
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_level, class_names)
|
59 |
|
60 |
# Get the top 5 predictions
|
61 |
+
top_indices = np.argsort(aggregated_predictions[0])[-5:][::-1]
|
62 |
|
63 |
+
# Get predicted class and common name for the top prediction
|
64 |
predicted_class_index = np.argmax(aggregated_predictions)
|
65 |
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
|
|
|
|
66 |
predicted_common_name = taxo_df[taxo_df[taxonomic_level] == predicted_class_name]['common_name'].values[0]
|
67 |
confidence = aggregated_predictions[0][predicted_class_index] * 100 # Confidence of the predicted class
|
68 |
|
|
|
74 |
class_name = aggregated_class_labels[i]
|
75 |
common_name = taxo_df[taxo_df[taxonomic_level] == class_name]['common_name'].values[0]
|
76 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
77 |
+
|
78 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
79 |
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
80 |
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
81 |
+
|
82 |
return output_text
|
83 |
|
84 |
# Define the Gradio interface
|
|
|
87 |
inputs=[gr.Image(type="pil"), # Input type: Image (PIL format)
|
88 |
gr.Dropdown(choices=taxonomic_levels, label="Taxonomic level", value="species")], # Use 'value' instead of 'default'
|
89 |
outputs="html", # Output type: HTML for formatting
|
90 |
+
title="Amazon arboreal species classification",
|
91 |
description="Upload an image and select the taxonomic level to classify the species."
|
92 |
)
|
93 |
|