Spaces:
Running
Running
Commit
·
b503865
1
Parent(s):
f147a22
Update app.py
Browse files
app.py
CHANGED
@@ -97,30 +97,17 @@ def make_prediction(image, taxonomic_level):
|
|
97 |
|
98 |
return output_text
|
99 |
|
100 |
-
# Define a function to update the welcome message based on the logged-in user
|
101 |
-
def update_message(request: gr.Request):
|
102 |
-
return f"Welcome to the demo, Dr. {request.username}!"
|
103 |
-
|
104 |
-
# Define the Gradio interface
|
105 |
with gr.Blocks() as demo:
|
106 |
-
#
|
107 |
-
|
|
|
|
|
108 |
|
109 |
-
#
|
110 |
-
|
111 |
-
|
112 |
-
# Define the main interface for predictions
|
113 |
-
interface = gr.Interface(
|
114 |
-
fn=make_prediction, # Function to be called for predictions
|
115 |
-
inputs=[gr.Image(type="pil"), # Input type: Image (PIL format)
|
116 |
-
gr.Dropdown(choices=taxonomic_levels, label="Taxonomic level", value="species")], # Use 'value' instead of 'default'
|
117 |
-
outputs="html", # Output type: HTML for formatting
|
118 |
-
title="Amazon arboreal species classification",
|
119 |
-
description="Upload an image and select the taxonomic level to classify the species."
|
120 |
-
)
|
121 |
|
122 |
-
#
|
123 |
-
|
124 |
|
125 |
# Launch the Gradio interface with authentication for the specified users
|
126 |
demo.launch(auth=[
|
|
|
97 |
|
98 |
return output_text
|
99 |
|
|
|
|
|
|
|
|
|
|
|
100 |
with gr.Blocks() as demo:
|
101 |
+
# Define the input and output components for predictions
|
102 |
+
image_input = gr.Image(type="pil", label="Upload Image") # Input type: Image (PIL format)
|
103 |
+
taxonomic_level_input = gr.Dropdown(choices=taxonomic_levels, label="Taxonomic level", value="species") # Dropdown for taxonomic level
|
104 |
+
output_html = gr.HTML(label="Prediction Result") # Output type: HTML for formatting
|
105 |
|
106 |
+
# Create the prediction button
|
107 |
+
predict_button = gr.Button("Make Prediction")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
# Define what happens when the button is clicked
|
110 |
+
predict_button.click(make_prediction, inputs=[image_input, taxonomic_level_input], outputs=output_html)
|
111 |
|
112 |
# Launch the Gradio interface with authentication for the specified users
|
113 |
demo.launch(auth=[
|