Spaces:
Sleeping
Sleeping
Commit
·
fd81c83
1
Parent(s):
7735f05
Update app.py
Browse files
app.py
CHANGED
@@ -16,11 +16,6 @@ taxo_df['species'] = taxo_df['species'].str.replace('_', ' ')
|
|
16 |
# Available taxonomic levels
|
17 |
taxonomic_levels = ['species', 'genus', 'family', 'order', 'class']
|
18 |
|
19 |
-
# Function to map predicted class index to class name at the selected taxonomic level
|
20 |
-
def get_class_name(predicted_class, taxonomic_level):
|
21 |
-
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
22 |
-
return unique_labels[predicted_class]
|
23 |
-
|
24 |
# Function to aggregate predictions to a higher taxonomic level
|
25 |
def aggregate_predictions(predicted_probs, taxonomic_level, class_names):
|
26 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
@@ -47,8 +42,8 @@ def load_and_preprocess_image(image, target_size=(224, 224)):
|
|
47 |
img_array = preprocess_input(img_array)
|
48 |
return img_array
|
49 |
|
50 |
-
# Function to make predictions
|
51 |
-
def
|
52 |
# Preprocess the image
|
53 |
img_array = load_and_preprocess_image(image)
|
54 |
|
@@ -83,13 +78,12 @@ def make_prediction(image, taxonomic_level):
|
|
83 |
|
84 |
if taxonomic_level == "species":
|
85 |
# Display common names only at species level and make it italic
|
86 |
-
common_name = taxo_df[
|
87 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
88 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
89 |
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
90 |
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
91 |
else:
|
92 |
-
# No common names at higher taxonomic levels
|
93 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
94 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
95 |
f"<span>{class_name}</span>" \
|
@@ -97,15 +91,72 @@ def make_prediction(image, taxonomic_level):
|
|
97 |
|
98 |
return output_text
|
99 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
# Define the Gradio interface
|
101 |
interface = gr.Interface(
|
102 |
-
fn=make_prediction,
|
103 |
-
inputs=[
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
title="Amazon arboreal species classification",
|
107 |
-
description="Upload an image and select the taxonomic level
|
108 |
)
|
109 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
# Launch the Gradio interface
|
111 |
interface.launch()
|
|
|
16 |
# Available taxonomic levels
|
17 |
taxonomic_levels = ['species', 'genus', 'family', 'order', 'class']
|
18 |
|
|
|
|
|
|
|
|
|
|
|
19 |
# Function to aggregate predictions to a higher taxonomic level
|
20 |
def aggregate_predictions(predicted_probs, taxonomic_level, class_names):
|
21 |
unique_labels = sorted(taxo_df[taxonomic_level].unique())
|
|
|
42 |
img_array = preprocess_input(img_array)
|
43 |
return img_array
|
44 |
|
45 |
+
# Function to make predictions when taxonomic level is specified
|
46 |
+
def make_prediction_with_taxonomic_level(image, taxonomic_level):
|
47 |
# Preprocess the image
|
48 |
img_array = load_and_preprocess_image(image)
|
49 |
|
|
|
78 |
|
79 |
if taxonomic_level == "species":
|
80 |
# Display common names only at species level and make it italic
|
81 |
+
common_name = taxo_df[taxo_level == class_name]['common_name'].values[0]
|
82 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
83 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
84 |
f"<span style='font-style: italic;'>{class_name}</span> (<span>{common_name}</span>)" \
|
85 |
f"<span style='margin-left: auto;'>{confidence_percentage:.2f}%</span></div>"
|
86 |
else:
|
|
|
87 |
confidence_percentage = aggregated_predictions[0][i] * 100
|
88 |
output_text += f"<div style='display: flex; justify-content: space-between;'>" \
|
89 |
f"<span>{class_name}</span>" \
|
|
|
91 |
|
92 |
return output_text
|
93 |
|
94 |
+
# Function to make predictions with automatic taxonomic resolution
|
95 |
+
def make_prediction_auto(image):
|
96 |
+
# Preprocess the image
|
97 |
+
img_array = load_and_preprocess_image(image)
|
98 |
+
|
99 |
+
# Get the class names from the 'species' column
|
100 |
+
class_names = sorted(taxo_df['species'].unique())
|
101 |
+
|
102 |
+
# Make a prediction
|
103 |
+
prediction = model.predict(img_array)
|
104 |
+
|
105 |
+
# Start with species-level predictions
|
106 |
+
taxonomic_level = 'species'
|
107 |
+
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_level, class_names)
|
108 |
+
|
109 |
+
# Check confidence and move to higher taxonomic levels if necessary
|
110 |
+
predicted_class_index = np.argmax(aggregated_predictions)
|
111 |
+
confidence = aggregated_predictions[0][predicted_class_index]
|
112 |
+
|
113 |
+
while confidence < 0.80 and taxonomic_levels.index(taxonomic_level) < len(taxonomic_levels) - 1:
|
114 |
+
# Move to the next higher taxonomic level
|
115 |
+
taxonomic_level = taxonomic_levels[taxonomic_levels.index(taxonomic_level) + 1]
|
116 |
+
aggregated_predictions, aggregated_class_labels = aggregate_predictions(prediction, taxonomic_level, class_names)
|
117 |
+
predicted_class_index = np.argmax(aggregated_predictions)
|
118 |
+
confidence = aggregated_predictions[0][predicted_class_index]
|
119 |
+
|
120 |
+
predicted_class_name = aggregated_class_labels[predicted_class_index]
|
121 |
+
|
122 |
+
if taxonomic_level == "species":
|
123 |
+
predicted_common_name = taxo_df[taxo_df[taxonomic_level] == predicted_class_name]['common_name'].values[0]
|
124 |
+
output_text = f"<h1 style='font-weight: bold;'><span style='font-style: italic;'>{predicted_class_name}</span> ({predicted_common_name})</h1>"
|
125 |
+
else:
|
126 |
+
output_text = f"<h1 style='font-weight: bold;'>{predicted_class_name}</h1>"
|
127 |
+
|
128 |
+
# Return the final prediction text
|
129 |
+
return output_text
|
130 |
+
|
131 |
+
# Gradio function to handle the flag logic
|
132 |
+
def make_prediction(image, choose_resolution, taxonomic_level):
|
133 |
+
if choose_resolution == "Yes, I want to specify the taxonomic level":
|
134 |
+
return make_prediction_with_taxonomic_level(image, taxonomic_level)
|
135 |
+
else:
|
136 |
+
return make_prediction_auto(image)
|
137 |
+
|
138 |
# Define the Gradio interface
|
139 |
interface = gr.Interface(
|
140 |
+
fn=make_prediction,
|
141 |
+
inputs=[
|
142 |
+
gr.Image(type="pil"),
|
143 |
+
gr.Radio(choices=["Yes, I want to specify the taxonomic level", "No, I will let the model decide"],
|
144 |
+
label="Do you want to choose the taxonomic resolution for predictions?", value="No, I will let the model decide"),
|
145 |
+
gr.Dropdown(choices=taxonomic_levels, label="Taxonomic level", value="species", interactive=True)],
|
146 |
+
outputs="html",
|
147 |
title="Amazon arboreal species classification",
|
148 |
+
description="Upload an image and select the taxonomic level or let the model decide the resolution."
|
149 |
)
|
150 |
|
151 |
+
# Add custom logic to disable the "Taxonomic level" dropdown when "No, I will let the model decide" is selected
|
152 |
+
def update_taxonomic_level_interface(choose_resolution):
|
153 |
+
if choose_resolution == "No, I will let the model decide":
|
154 |
+
return gr.Dropdown.update(interactive=False)
|
155 |
+
else:
|
156 |
+
return gr.Dropdown.update(interactive=True)
|
157 |
+
|
158 |
+
# Set up dynamic behavior for the interface
|
159 |
+
interface.update(inputs=["Do you want to choose the taxonomic resolution for predictions?"], fn=update_taxonomic_level_interface)
|
160 |
+
|
161 |
# Launch the Gradio interface
|
162 |
interface.launch()
|