Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,16 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import torch.nn.functional as F
|
4 |
import torchaudio
|
5 |
from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor
|
6 |
from src.models import Wav2Vec2ForSpeechClassification
|
|
|
|
|
|
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
model_name_or_path = "andromeda01111/Malayalam_SA"
|
10 |
config = AutoConfig.from_pretrained(model_name_or_path)
|
@@ -12,67 +18,46 @@ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
|
12 |
sampling_rate = feature_extractor.sampling_rate
|
13 |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
try:
|
26 |
-
# Check if the input is a file path (upload) or direct audio data (recording)
|
27 |
-
if isinstance(audio_path, str):
|
28 |
-
speech_array, _sampling_rate = torchaudio.load(audio_path)
|
29 |
-
else:
|
30 |
-
# If it's recorded audio, Gradio provides it as a NumPy array
|
31 |
-
speech_array = torch.tensor(audio_path)
|
32 |
-
_sampling_rate = sampling_rate # Use default sampling rate
|
33 |
-
|
34 |
-
# Resample to match model requirements
|
35 |
-
resampler = torchaudio.transforms.Resample(orig_freq=_sampling_rate, new_freq=sampling_rate)
|
36 |
-
speech = resampler(speech_array).squeeze().numpy()
|
37 |
-
return speech
|
38 |
-
|
39 |
-
except Exception as e:
|
40 |
-
print(f"Error processing audio: {e}")
|
41 |
-
return None
|
42 |
-
|
43 |
-
|
44 |
-
def predict(audio_path):
|
45 |
-
speech = speech_file_to_array_fn(audio_path, sampling_rate)
|
46 |
features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
47 |
-
|
48 |
input_values = features.input_values
|
49 |
attention_mask = features.attention_mask
|
50 |
-
|
51 |
with torch.no_grad():
|
52 |
logits = model(input_values, attention_mask=attention_mask).logits
|
53 |
-
|
54 |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
55 |
-
output_emotion = {config.id2label[i]: f"{round(score * 100, 3):.1f}%" for i, score in enumerate(scores)
|
56 |
-
|
57 |
return output_emotion
|
58 |
|
|
|
59 |
# Wrapper function for Gradio
|
60 |
def gradio_predict(audio):
|
61 |
predictions = predict(audio)
|
62 |
return [f"{pred['Emotion']}: {pred['Score']}" for pred in predictions]
|
63 |
|
|
|
64 |
# Gradio interface
|
65 |
emotions = [config.id2label[i] for i in range(len(config.id2label))]
|
66 |
outputs = [gr.Textbox(label=emotion, interactive=False) for emotion in emotions]
|
67 |
|
68 |
-
# Gradio Interface with Audio Recording (max duration: 10 seconds)
|
69 |
interface = gr.Interface(
|
70 |
fn=predict,
|
71 |
-
inputs=gr.Audio(
|
72 |
outputs=outputs,
|
73 |
title="Emotion Recognition",
|
74 |
-
description="
|
75 |
-
live=False,
|
76 |
)
|
77 |
|
78 |
# Launch the app
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor
|
7 |
from src.models import Wav2Vec2ForSpeechClassification
|
8 |
+
|
9 |
+
import librosa
|
10 |
+
import IPython.display as ipd
|
11 |
import numpy as np
|
12 |
+
import pandas as pd
|
13 |
+
import os
|
14 |
|
15 |
model_name_or_path = "andromeda01111/Malayalam_SA"
|
16 |
config = AutoConfig.from_pretrained(model_name_or_path)
|
|
|
18 |
sampling_rate = feature_extractor.sampling_rate
|
19 |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
|
20 |
|
21 |
+
|
22 |
+
def speech_file_to_array_fn(path, sampling_rate):
|
23 |
+
speech_array, _sampling_rate = torchaudio.load(path)
|
24 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
25 |
+
speech = resampler(speech_array).squeeze().numpy()
|
26 |
+
return speech
|
27 |
+
|
28 |
+
|
29 |
+
def predict(path, sampling_rate):
|
30 |
+
speech = speech_file_to_array_fn(path, sampling_rate)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
32 |
+
|
33 |
input_values = features.input_values
|
34 |
attention_mask = features.attention_mask
|
35 |
+
|
36 |
with torch.no_grad():
|
37 |
logits = model(input_values, attention_mask=attention_mask).logits
|
38 |
+
|
39 |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
40 |
+
output_emotion = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
41 |
+
|
42 |
return output_emotion
|
43 |
|
44 |
+
|
45 |
# Wrapper function for Gradio
|
46 |
def gradio_predict(audio):
|
47 |
predictions = predict(audio)
|
48 |
return [f"{pred['Emotion']}: {pred['Score']}" for pred in predictions]
|
49 |
|
50 |
+
|
51 |
# Gradio interface
|
52 |
emotions = [config.id2label[i] for i in range(len(config.id2label))]
|
53 |
outputs = [gr.Textbox(label=emotion, interactive=False) for emotion in emotions]
|
54 |
|
|
|
55 |
interface = gr.Interface(
|
56 |
fn=predict,
|
57 |
+
inputs=gr.Audio(label="Upload Audio", type="filepath"),
|
58 |
outputs=outputs,
|
59 |
title="Emotion Recognition",
|
60 |
+
description="Upload an audio file to predict emotions and their corresponding percentages.",
|
|
|
61 |
)
|
62 |
|
63 |
# Launch the app
|