Update app.py
Browse files
app.py
CHANGED
@@ -1,16 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
-
import torch.nn as nn
|
4 |
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor
|
7 |
from src.models import Wav2Vec2ForSpeechClassification
|
8 |
-
|
9 |
-
import librosa
|
10 |
-
import IPython.display as ipd
|
11 |
import numpy as np
|
12 |
-
import pandas as pd
|
13 |
-
import os
|
14 |
|
15 |
model_name_or_path = "andromeda01111/Malayalam_SA"
|
16 |
config = AutoConfig.from_pretrained(model_name_or_path)
|
@@ -18,47 +12,39 @@ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
|
|
18 |
sampling_rate = feature_extractor.sampling_rate
|
19 |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
|
20 |
|
21 |
-
|
22 |
def speech_file_to_array_fn(path, sampling_rate):
|
23 |
speech_array, _sampling_rate = torchaudio.load(path)
|
24 |
-
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
25 |
speech = resampler(speech_array).squeeze().numpy()
|
26 |
return speech
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
speech = speech_file_to_array_fn(path, sampling_rate)
|
31 |
features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
32 |
-
|
33 |
input_values = features.input_values
|
34 |
attention_mask = features.attention_mask
|
35 |
-
|
36 |
with torch.no_grad():
|
37 |
logits = model(input_values, attention_mask=attention_mask).logits
|
38 |
-
|
39 |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
40 |
-
output_emotion =
|
41 |
-
|
42 |
return output_emotion
|
43 |
|
44 |
-
|
45 |
-
# Wrapper function for Gradio
|
46 |
def gradio_predict(audio):
|
47 |
-
|
48 |
-
return [f"{pred['Emotion']}: {pred['Score']}" for pred in predictions]
|
49 |
-
|
50 |
-
|
51 |
-
# Gradio interface
|
52 |
-
emotions = [config.id2label[i] for i in range(len(config.id2label))]
|
53 |
-
outputs = [gr.Textbox(label=emotion, interactive=False) for emotion in emotions]
|
54 |
|
|
|
55 |
interface = gr.Interface(
|
56 |
-
fn=
|
57 |
-
inputs=gr.Audio(label="Upload Audio",
|
58 |
-
outputs=
|
59 |
title="Emotion Recognition",
|
60 |
-
description="
|
|
|
61 |
)
|
62 |
|
63 |
# Launch the app
|
64 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
|
|
3 |
import torch.nn.functional as F
|
4 |
import torchaudio
|
5 |
from transformers import AutoConfig, Wav2Vec2Processor, Wav2Vec2FeatureExtractor
|
6 |
from src.models import Wav2Vec2ForSpeechClassification
|
|
|
|
|
|
|
7 |
import numpy as np
|
|
|
|
|
8 |
|
9 |
model_name_or_path = "andromeda01111/Malayalam_SA"
|
10 |
config = AutoConfig.from_pretrained(model_name_or_path)
|
|
|
12 |
sampling_rate = feature_extractor.sampling_rate
|
13 |
model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path)
|
14 |
|
|
|
15 |
def speech_file_to_array_fn(path, sampling_rate):
|
16 |
speech_array, _sampling_rate = torchaudio.load(path)
|
17 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate, sampling_rate)
|
18 |
speech = resampler(speech_array).squeeze().numpy()
|
19 |
return speech
|
20 |
|
21 |
+
def predict(audio_path):
|
22 |
+
speech = speech_file_to_array_fn(audio_path, sampling_rate)
|
|
|
23 |
features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
24 |
+
|
25 |
input_values = features.input_values
|
26 |
attention_mask = features.attention_mask
|
27 |
+
|
28 |
with torch.no_grad():
|
29 |
logits = model(input_values, attention_mask=attention_mask).logits
|
30 |
+
|
31 |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
32 |
+
output_emotion = {config.id2label[i]: f"{round(score * 100, 3):.1f}%" for i, score in enumerate(scores)}
|
33 |
+
|
34 |
return output_emotion
|
35 |
|
|
|
|
|
36 |
def gradio_predict(audio):
|
37 |
+
return predict(audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Gradio Interface with Audio Recording (max duration: 10 seconds)
|
40 |
interface = gr.Interface(
|
41 |
+
fn=gradio_predict,
|
42 |
+
inputs=gr.Audio(source="microphone", type="filepath", label="Record or Upload Audio", streaming=False),
|
43 |
+
outputs=gr.JSON(label="Emotion Scores"),
|
44 |
title="Emotion Recognition",
|
45 |
+
description="Record or upload an audio file (max 10 sec) to predict emotions and their corresponding percentages.",
|
46 |
+
live=False,
|
47 |
)
|
48 |
|
49 |
# Launch the app
|
50 |
+
interface.launch()
|