Upload 10 files
Browse files- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-39.pyc +0 -0
- src/__pycache__/collator.cpython-39.pyc +0 -0
- src/__pycache__/modeling_outputs.cpython-39.pyc +0 -0
- src/__pycache__/models.cpython-39.pyc +0 -0
- src/__pycache__/trainer.cpython-39.pyc +0 -0
- src/collator.py +58 -0
- src/modeling_outputs.py +12 -0
- src/models.py +220 -0
- src/trainer.py +62 -0
src/__init__.py
ADDED
File without changes
|
src/__pycache__/__init__.cpython-39.pyc
ADDED
Binary file (149 Bytes). View file
|
|
src/__pycache__/collator.cpython-39.pyc
ADDED
Binary file (3.29 kB). View file
|
|
src/__pycache__/modeling_outputs.cpython-39.pyc
ADDED
Binary file (700 Bytes). View file
|
|
src/__pycache__/models.cpython-39.pyc
ADDED
Binary file (5.6 kB). View file
|
|
src/__pycache__/trainer.cpython-39.pyc
ADDED
Binary file (2.04 kB). View file
|
|
src/collator.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Dict, List, Optional, Union
|
3 |
+
import torch
|
4 |
+
|
5 |
+
import transformers
|
6 |
+
from transformers import Wav2Vec2Processor, Wav2Vec2FeatureExtractor
|
7 |
+
|
8 |
+
|
9 |
+
@dataclass
|
10 |
+
class DataCollatorCTCWithPadding:
|
11 |
+
"""
|
12 |
+
Data collator that will dynamically pad the inputs received.
|
13 |
+
Args:
|
14 |
+
feature_extractor (:class:`~transformers.Wav2Vec2FeatureExtractor`)
|
15 |
+
The feature_extractor used for proccessing the data.
|
16 |
+
padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
|
17 |
+
Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
|
18 |
+
among:
|
19 |
+
* :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
|
20 |
+
sequence if provided).
|
21 |
+
* :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
|
22 |
+
maximum acceptable input length for the model if that argument is not provided.
|
23 |
+
* :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
|
24 |
+
different lengths).
|
25 |
+
max_length (:obj:`int`, `optional`):
|
26 |
+
Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
|
27 |
+
max_length_labels (:obj:`int`, `optional`):
|
28 |
+
Maximum length of the ``labels`` returned list and optionally padding length (see above).
|
29 |
+
pad_to_multiple_of (:obj:`int`, `optional`):
|
30 |
+
If set will pad the sequence to a multiple of the provided value.
|
31 |
+
This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
|
32 |
+
7.5 (Volta).
|
33 |
+
"""
|
34 |
+
|
35 |
+
feature_extractor: Wav2Vec2FeatureExtractor
|
36 |
+
padding: Union[bool, str] = True
|
37 |
+
max_length: Optional[int] = None
|
38 |
+
max_length_labels: Optional[int] = None
|
39 |
+
pad_to_multiple_of: Optional[int] = None
|
40 |
+
pad_to_multiple_of_labels: Optional[int] = None
|
41 |
+
|
42 |
+
def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
|
43 |
+
input_features = [{"input_values": feature["input_values"]} for feature in features]
|
44 |
+
label_features = [feature["labels"] for feature in features]
|
45 |
+
|
46 |
+
d_type = torch.long if isinstance(label_features[0], int) else torch.float
|
47 |
+
|
48 |
+
batch = self.feature_extractor.pad(
|
49 |
+
input_features,
|
50 |
+
padding=self.padding,
|
51 |
+
max_length=self.max_length,
|
52 |
+
pad_to_multiple_of=self.pad_to_multiple_of,
|
53 |
+
return_tensors="pt",
|
54 |
+
)
|
55 |
+
|
56 |
+
batch["labels"] = torch.tensor(label_features, dtype=d_type)
|
57 |
+
|
58 |
+
return batch
|
src/modeling_outputs.py
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
import torch
|
4 |
+
from transformers.file_utils import ModelOutput
|
5 |
+
|
6 |
+
|
7 |
+
@dataclass
|
8 |
+
class SpeechClassifierOutput(ModelOutput):
|
9 |
+
loss: Optional[torch.FloatTensor] = None
|
10 |
+
logits: torch.FloatTensor = None
|
11 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
12 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
src/models.py
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
4 |
+
|
5 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
6 |
+
Wav2Vec2PreTrainedModel,
|
7 |
+
Wav2Vec2Model
|
8 |
+
)
|
9 |
+
from transformers.models.hubert.modeling_hubert import (
|
10 |
+
HubertPreTrainedModel,
|
11 |
+
HubertModel
|
12 |
+
)
|
13 |
+
|
14 |
+
from src.modeling_outputs import SpeechClassifierOutput
|
15 |
+
|
16 |
+
|
17 |
+
class Wav2Vec2ClassificationHead(nn.Module):
|
18 |
+
"""Head for wav2vec classification task."""
|
19 |
+
|
20 |
+
def __init__(self, config):
|
21 |
+
super().__init__()
|
22 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
23 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
24 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
25 |
+
|
26 |
+
def forward(self, features, **kwargs):
|
27 |
+
x = features
|
28 |
+
x = self.dropout(x)
|
29 |
+
x = self.dense(x)
|
30 |
+
x = torch.tanh(x)
|
31 |
+
x = self.dropout(x)
|
32 |
+
x = self.out_proj(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class Wav2Vec2ForSpeechClassification(Wav2Vec2PreTrainedModel):
|
37 |
+
def __init__(self, config):
|
38 |
+
super().__init__(config)
|
39 |
+
self.num_labels = config.num_labels
|
40 |
+
self.pooling_mode = config.pooling_mode
|
41 |
+
self.config = config
|
42 |
+
|
43 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
44 |
+
self.classifier = Wav2Vec2ClassificationHead(config)
|
45 |
+
|
46 |
+
self.init_weights()
|
47 |
+
|
48 |
+
def freeze_feature_extractor(self):
|
49 |
+
self.wav2vec2.feature_extractor._freeze_parameters()
|
50 |
+
|
51 |
+
def merged_strategy(
|
52 |
+
self,
|
53 |
+
hidden_states,
|
54 |
+
mode="mean"
|
55 |
+
):
|
56 |
+
if mode == "mean":
|
57 |
+
outputs = torch.mean(hidden_states, dim=1)
|
58 |
+
elif mode == "sum":
|
59 |
+
outputs = torch.sum(hidden_states, dim=1)
|
60 |
+
elif mode == "max":
|
61 |
+
outputs = torch.max(hidden_states, dim=1)[0]
|
62 |
+
else:
|
63 |
+
raise Exception(
|
64 |
+
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
65 |
+
|
66 |
+
return outputs
|
67 |
+
|
68 |
+
def forward(
|
69 |
+
self,
|
70 |
+
input_values,
|
71 |
+
attention_mask=None,
|
72 |
+
output_attentions=None,
|
73 |
+
output_hidden_states=None,
|
74 |
+
return_dict=None,
|
75 |
+
labels=None,
|
76 |
+
):
|
77 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
78 |
+
outputs = self.wav2vec2(
|
79 |
+
input_values,
|
80 |
+
attention_mask=attention_mask,
|
81 |
+
output_attentions=output_attentions,
|
82 |
+
output_hidden_states=output_hidden_states,
|
83 |
+
return_dict=return_dict,
|
84 |
+
)
|
85 |
+
hidden_states = outputs[0]
|
86 |
+
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
87 |
+
logits = self.classifier(hidden_states)
|
88 |
+
|
89 |
+
loss = None
|
90 |
+
if labels is not None:
|
91 |
+
if self.config.problem_type is None:
|
92 |
+
if self.num_labels == 1:
|
93 |
+
self.config.problem_type = "regression"
|
94 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
95 |
+
self.config.problem_type = "single_label_classification"
|
96 |
+
else:
|
97 |
+
self.config.problem_type = "multi_label_classification"
|
98 |
+
|
99 |
+
if self.config.problem_type == "regression":
|
100 |
+
loss_fct = MSELoss()
|
101 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
102 |
+
elif self.config.problem_type == "single_label_classification":
|
103 |
+
loss_fct = CrossEntropyLoss()
|
104 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
105 |
+
elif self.config.problem_type == "multi_label_classification":
|
106 |
+
loss_fct = BCEWithLogitsLoss()
|
107 |
+
loss = loss_fct(logits, labels)
|
108 |
+
|
109 |
+
if not return_dict:
|
110 |
+
output = (logits,) + outputs[2:]
|
111 |
+
return ((loss,) + output) if loss is not None else output
|
112 |
+
|
113 |
+
return SpeechClassifierOutput(
|
114 |
+
loss=loss,
|
115 |
+
logits=logits,
|
116 |
+
hidden_states=outputs.hidden_states,
|
117 |
+
attentions=outputs.attentions,
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
class HubertClassificationHead(nn.Module):
|
122 |
+
"""Head for hubert classification task."""
|
123 |
+
|
124 |
+
def __init__(self, config):
|
125 |
+
super().__init__()
|
126 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
127 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
128 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
129 |
+
|
130 |
+
def forward(self, features, **kwargs):
|
131 |
+
x = features
|
132 |
+
x = self.dropout(x)
|
133 |
+
x = self.dense(x)
|
134 |
+
x = torch.tanh(x)
|
135 |
+
x = self.dropout(x)
|
136 |
+
x = self.out_proj(x)
|
137 |
+
return x
|
138 |
+
|
139 |
+
|
140 |
+
class HubertForSpeechClassification(HubertPreTrainedModel):
|
141 |
+
def __init__(self, config):
|
142 |
+
super().__init__(config)
|
143 |
+
self.num_labels = config.num_labels
|
144 |
+
self.pooling_mode = config.pooling_mode
|
145 |
+
self.config = config
|
146 |
+
|
147 |
+
self.hubert = HubertModel(config)
|
148 |
+
self.classifier = HubertClassificationHead(config)
|
149 |
+
|
150 |
+
self.init_weights()
|
151 |
+
|
152 |
+
def freeze_feature_extractor(self): self.hubert.feature_extractor._freeze_parameters()
|
153 |
+
|
154 |
+
def merged_strategy(
|
155 |
+
self,
|
156 |
+
hidden_states,
|
157 |
+
mode="mean"):
|
158 |
+
if mode == "mean":
|
159 |
+
outputs = torch.mean(hidden_states, dim=1)
|
160 |
+
elif mode == "sum":
|
161 |
+
outputs = torch.sum(hidden_states, dim=1)
|
162 |
+
elif mode == "max":
|
163 |
+
outputs = torch.max(hidden_states, dim=1)[0]
|
164 |
+
else:
|
165 |
+
raise Exception(
|
166 |
+
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']")
|
167 |
+
|
168 |
+
return outputs
|
169 |
+
|
170 |
+
def forward(
|
171 |
+
self,
|
172 |
+
input_values,
|
173 |
+
attention_mask=None,
|
174 |
+
output_attentions=None,
|
175 |
+
output_hidden_states=None,
|
176 |
+
return_dict=None,
|
177 |
+
labels=None,
|
178 |
+
):
|
179 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
180 |
+
outputs = self.hubert(
|
181 |
+
input_values,
|
182 |
+
attention_mask=attention_mask,
|
183 |
+
output_attentions=output_attentions,
|
184 |
+
output_hidden_states=output_hidden_states,
|
185 |
+
return_dict=return_dict,
|
186 |
+
)
|
187 |
+
hidden_states = outputs[0]
|
188 |
+
hidden_states = self.merged_strategy(hidden_states, mode=self.pooling_mode)
|
189 |
+
logits = self.classifier(hidden_states)
|
190 |
+
|
191 |
+
loss = None
|
192 |
+
if labels is not None:
|
193 |
+
if self.config.problem_type is None:
|
194 |
+
if self.num_labels == 1:
|
195 |
+
self.config.problem_type = "regression"
|
196 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
197 |
+
self.config.problem_type = "single_label_classification"
|
198 |
+
else:
|
199 |
+
self.config.problem_type = "multi_label_classification"
|
200 |
+
|
201 |
+
if self.config.problem_type == "regression":
|
202 |
+
loss_fct = MSELoss()
|
203 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels)
|
204 |
+
elif self.config.problem_type == "single_label_classification":
|
205 |
+
loss_fct = CrossEntropyLoss()
|
206 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
207 |
+
elif self.config.problem_type == "multi_label_classification":
|
208 |
+
loss_fct = BCEWithLogitsLoss()
|
209 |
+
loss = loss_fct(logits, labels)
|
210 |
+
|
211 |
+
if not return_dict:
|
212 |
+
output = (logits,) + outputs[2:]
|
213 |
+
return ((loss,) + output) if loss is not None else output
|
214 |
+
|
215 |
+
return SpeechClassifierOutput(
|
216 |
+
loss=loss,
|
217 |
+
logits=logits,
|
218 |
+
hidden_states=outputs.hidden_states,
|
219 |
+
attentions=outputs.attentions,
|
220 |
+
)
|
src/trainer.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Dict, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from packaging import version
|
5 |
+
from torch import nn
|
6 |
+
|
7 |
+
from transformers import (
|
8 |
+
Trainer,
|
9 |
+
is_apex_available,
|
10 |
+
)
|
11 |
+
|
12 |
+
if is_apex_available():
|
13 |
+
from apex import amp
|
14 |
+
|
15 |
+
if version.parse(torch.__version__) >= version.parse("1.6"):
|
16 |
+
_is_native_amp_available = True
|
17 |
+
from torch.cuda.amp import autocast
|
18 |
+
|
19 |
+
|
20 |
+
class CTCTrainer(Trainer):
|
21 |
+
def training_step(self, model: nn.Module, inputs: Dict[str, Union[torch.Tensor, Any]]) -> torch.Tensor:
|
22 |
+
"""
|
23 |
+
Perform a training step on a batch of inputs.
|
24 |
+
|
25 |
+
Subclass and override to inject custom behavior.
|
26 |
+
|
27 |
+
Args:
|
28 |
+
model (:obj:`nn.Module`):
|
29 |
+
The model to train.
|
30 |
+
inputs (:obj:`Dict[str, Union[torch.Tensor, Any]]`):
|
31 |
+
The inputs and targets of the model.
|
32 |
+
|
33 |
+
The dictionary will be unpacked before being fed to the model. Most models expect the targets under the
|
34 |
+
argument :obj:`labels`. Check your model's documentation for all accepted arguments.
|
35 |
+
|
36 |
+
Return:
|
37 |
+
:obj:`torch.Tensor`: The tensor with training loss on this batch.
|
38 |
+
"""
|
39 |
+
|
40 |
+
model.train()
|
41 |
+
inputs = self._prepare_inputs(inputs)
|
42 |
+
|
43 |
+
if self.use_amp:
|
44 |
+
with autocast():
|
45 |
+
loss = self.compute_loss(model, inputs)
|
46 |
+
else:
|
47 |
+
loss = self.compute_loss(model, inputs)
|
48 |
+
|
49 |
+
if self.args.gradient_accumulation_steps > 1:
|
50 |
+
loss = loss / self.args.gradient_accumulation_steps
|
51 |
+
|
52 |
+
if self.use_amp:
|
53 |
+
self.scaler.scale(loss).backward()
|
54 |
+
elif self.use_apex:
|
55 |
+
with amp.scale_loss(loss, self.optimizer) as scaled_loss:
|
56 |
+
scaled_loss.backward()
|
57 |
+
elif self.deepspeed:
|
58 |
+
self.deepspeed.backward(loss)
|
59 |
+
else:
|
60 |
+
loss.backward()
|
61 |
+
|
62 |
+
return loss.detach()
|