Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -38,7 +38,9 @@ class_names = ["Benign", "Malignant"]
|
|
38 |
|
39 |
# Load trained Neural Network model (TensorFlow/Keras)
|
40 |
nn_model_path = "my_NN_BC_model.keras"
|
41 |
-
|
|
|
|
|
42 |
if os.path.exists(nn_model_path):
|
43 |
try:
|
44 |
nn_model = tf.keras.models.load_model(nn_model_path)
|
@@ -80,7 +82,7 @@ def classify(model_choice, image=None, *features):
|
|
80 |
output = vit_model(input_tensor)
|
81 |
predicted_class = torch.argmax(output, dim=1).item()
|
82 |
|
83 |
-
return
|
84 |
|
85 |
elif model_choice == "Neural Network":
|
86 |
if any(f is None for f in features):
|
@@ -91,7 +93,7 @@ def classify(model_choice, image=None, *features):
|
|
91 |
prediction = nn_model.predict(input_data_std) if nn_model else [[0, 1]]
|
92 |
predicted_class = np.argmax(prediction)
|
93 |
|
94 |
-
return
|
95 |
|
96 |
# Gradio UI
|
97 |
with gr.Blocks() as demo:
|
@@ -117,8 +119,8 @@ with gr.Blocks() as demo:
|
|
117 |
return {feature_inputs[i]: example[i] for i in range(len(feature_inputs))}
|
118 |
|
119 |
with gr.Row():
|
120 |
-
example_btn_1 = gr.Button("π΅
|
121 |
-
example_btn_2 = gr.Button("π΄
|
122 |
|
123 |
output_text = gr.Textbox(label="π Model Prediction", interactive=False)
|
124 |
|
|
|
38 |
|
39 |
# Load trained Neural Network model (TensorFlow/Keras)
|
40 |
nn_model_path = "my_NN_BC_model.keras"
|
41 |
+
|
42 |
+
nn_model = tf.keras.models.load_model(nn_model_path)
|
43 |
+
|
44 |
if os.path.exists(nn_model_path):
|
45 |
try:
|
46 |
nn_model = tf.keras.models.load_model(nn_model_path)
|
|
|
82 |
output = vit_model(input_tensor)
|
83 |
predicted_class = torch.argmax(output, dim=1).item()
|
84 |
|
85 |
+
return class_names[predicted_class]
|
86 |
|
87 |
elif model_choice == "Neural Network":
|
88 |
if any(f is None for f in features):
|
|
|
93 |
prediction = nn_model.predict(input_data_std) if nn_model else [[0, 1]]
|
94 |
predicted_class = np.argmax(prediction)
|
95 |
|
96 |
+
return class_names[predicted_class]
|
97 |
|
98 |
# Gradio UI
|
99 |
with gr.Blocks() as demo:
|
|
|
119 |
return {feature_inputs[i]: example[i] for i in range(len(feature_inputs))}
|
120 |
|
121 |
with gr.Row():
|
122 |
+
example_btn_1 = gr.Button("π΅ Malignant Example")
|
123 |
+
example_btn_2 = gr.Button("π΄ Benign Example")
|
124 |
|
125 |
output_text = gr.Textbox(label="π Model Prediction", interactive=False)
|
126 |
|