Spaces:
Sleeping
Sleeping
File size: 8,234 Bytes
e380bd8 a6ee350 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 6192bb2 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 6192bb2 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 6192bb2 e380bd8 3cfc2e7 e380bd8 2805894 e380bd8 a6ee350 e380bd8 a6ee350 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 a6ee350 e380bd8 a6ee350 e380bd8 a6ee350 2805894 a6ee350 e380bd8 a6ee350 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 3cfc2e7 e380bd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
"""Gradio clone of https://google-research.github.io/vision_transformer/lit/.
Features:
- Models are downloaded dynamically.
- Models are cached on local disk, and in RAM.
- Progress bars when downloading/reading/computing.
- Dynamic update of model controls.
- Dynamic generation of output sliders.
- Use of `gr.State()` for better use of progress bars.
"""
import dataclasses
import functools
import json
import logging
import os
import time
import urllib.request
import gradio as gr
import PIL.Image
# pylint: disable=g-bad-import-order
import big_vision_contrastive_models as models
import gradio_helpers
INFO_URL = 'https://google-research.github.io/vision_transformer/lit/data/images/info.json'
IMG_URL_FMT = 'https://google-research.github.io/vision_transformer/lit/data/images/{}.jpg'
MAX_ANSWERS = 10
MAX_DISK_CACHE = 20e9
MAX_RAM_CACHE = 10e9 # CPU basic has 16G RAM
LOADING_SECS = {'B/16': 5, 'L/16': 10, 'So400m/14': 10}
# family/variant/res -> name
MODEL_MAP = {
'lit': {
'B/16': {
224: 'lit_b16b',
},
'L/16': {
224: 'lit_l16l',
},
},
'siglip': {
'B/16': {
224: 'siglip_b16b_224',
256: 'siglip_b16b_256',
384: 'siglip_b16b_384',
512: 'siglip_b16b_512',
},
'L/16': {
256: 'siglip_l16l_256',
384: 'siglip_l16l_384',
},
'So400m/14': {
224: 'siglip_so400m14so440m_224',
384: 'siglip_so400m14so440m_384',
},
},
}
def get_cache_status():
"""Returns a string summarizing cache status."""
mem_n, mem_sz = gradio_helpers.get_memory_cache_info()
disk_n, disk_sz = gradio_helpers.get_disk_cache_info()
return (
f'memory cache {mem_n} items [{mem_sz/1e9:.2f}G], '
f'disk cache {disk_n} items [{disk_sz/1e9:.2f}G]'
)
def compute(
image_path, prompts, family, variant, res, bias, progress=gr.Progress()
):
"""Loads model and computes answers."""
if image_path is None:
raise gr.Error('Must first select an image!')
t0 = time.monotonic()
model_name = MODEL_MAP[family][variant][res]
config = models.MODEL_CONFIGS[model_name]
local_ckpt = gradio_helpers.get_disk_cache(
config.ckpt, progress=progress, max_cache_size_bytes=MAX_DISK_CACHE)
config = dataclasses.replace(config, ckpt=local_ckpt)
params, model = gradio_helpers.get_memory_cache(
config,
lambda: models.load_model(config),
max_cache_size_bytes=MAX_RAM_CACHE,
progress=progress,
estimated_secs={
('lit', 'B/16'): 1,
('lit', 'L/16'): 2.5,
('siglip', 'B/16'): 9,
('siglip', 'L/16'): 28,
('siglip', 'So400m/14'): 36,
}.get((family, variant))
)
model: models.ContrastiveModel = model
it = progress.tqdm(list(range(3)), desc='compute')
logging.info('Opening image "%s"', image_path)
with gradio_helpers.timed(f'opening image "{image_path}"'):
image = PIL.Image.open(image_path)
next(it)
with gradio_helpers.timed('image features'):
zimg, unused_out = model.embed_images(
params, model.preprocess_images([image])
)
next(it)
with gradio_helpers.timed('text features'):
prompts = prompts.split('\n')
ztxt, out = model.embed_texts(
params, model.preprocess_texts(prompts)
)
next(it)
t = model.get_temperature(out)
text_probs = []
if family == 'lit':
text_probs = list(model.get_probabilities(zimg, ztxt, t, axis=-1)[0])
elif family == 'siglip':
text_probs = list(model.get_probabilities(zimg, ztxt, t, bias=bias)[0])
state = list(zip(prompts, [round(p.item(), 3) for p in text_probs]))
dt = time.monotonic() - t0
status = gr.Markdown(
f'Computed inference in {dt:.1f} seconds ({get_cache_status()})')
if 'b' in out:
logging.info('model_name=%s default bias=%f', model_name, out['b'])
return status, state
def update_answers(state):
"""Generates visible sliders for answers."""
answers = []
for prompt, prob in state[:MAX_ANSWERS]:
answers.append(
gr.Slider(value=round(100*prob, 2), label=prompt, visible=True))
while len(answers) < MAX_ANSWERS:
answers.append(gr.Slider(visible=False))
return answers
def create_app():
"""Creates demo UI."""
css = '''
.slider input[type="number"] { width: 5em; }
#examples td.textbox > div {
white-space: pre-wrap !important;
text-align: left;
}
'''
with gr.Blocks(css=css) as demo:
gr.Markdown(
'Gradio clone of the original '
'[LiT demo](https://google-research.github.io/vision_transformer/lit/).'
)
status = gr.Markdown(f'Ready ({get_cache_status()})')
with gr.Row():
image = gr.Image(label='Image', type='filepath')
source = gr.Markdown('', visible=False)
state = gr.State([])
with gr.Column():
prompts = gr.Textbox(
label='Prompts (press Shift-ENTER to add a prompt)')
with gr.Row():
family = gr.Dropdown(
value='lit', choices=list(MODEL_MAP), label='Model family')
make_variant = functools.partial(gr.Dropdown, label='Variant')
variant = make_variant(list(MODEL_MAP['lit']), value='B/16')
make_res = functools.partial(gr.Dropdown, label='Resolution')
res = make_res(list(MODEL_MAP['lit']['B/16']), value=224)
def make_bias(family, variant, res):
visible = family == 'siglip'
value = {
('siglip', 'B/16', 224): -12.9,
('siglip', 'L/16', 256): -12.7,
('siglip', 'L/16', 256): -16.5,
# ...
}.get((family, variant, res), -10.0)
return gr.Slider(
value=value,
minimum=-20,
maximum=0,
step=0.05,
label='Bias',
visible=visible,
)
bias = make_bias(family.value, variant.value, res.value)
def update_inputs(family, variant, res):
d = MODEL_MAP[family]
variants = list(d)
variant = variant if variant in variants else variants[0]
d = d[variant]
ress = list(d)
res = res if res in ress else ress[0]
return [
make_variant(variants, value=variant),
make_res(ress, value=res),
make_bias(family, variant, res),
]
gr.on(
[family.change, variant.change, res.change],
update_inputs,
[family, variant, res],
[variant, res, bias],
)
# (end of code for reactive UI)
run = gr.Button('Run')
answers = [
# Will be set to visible in `update_answers()`.
gr.Slider(0, 100, 0, visible=False, elem_classes='slider')
for _ in range(MAX_ANSWERS)
]
# We want to avoid showing multiple progress bars, so we only update
# a single `status` widget here, and store the computed information in
# `state`...
run.click(
fn=compute,
inputs=[image, prompts, family, variant, res, bias],
outputs=[status, state],
)
# ... then we use `state` to update UI components without showing a
# progress bar in their place.
status.change(fn=update_answers, inputs=state, outputs=answers)
info = json.load(urllib.request.urlopen(INFO_URL))
gr.Markdown('Note: below images have 224 px resolution only:')
gr.Examples(
examples=[
[
IMG_URL_FMT.format(ex['id']),
ex['prompts'].replace(', ', '\n'),
'[source](%s)' % ex['source'],
]
for ex in info
],
inputs=[image, prompts, source, license],
outputs=answers,
elem_id='examples',
)
return demo
if __name__ == '__main__':
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
for k, v in os.environ.items():
logging.info('environ["%s"] = %r', k, v)
models.setup()
create_app().queue().launch()
|