andyfe's picture
Update app.py
866a6fe
raw
history blame
7.35 kB
import json
import os
import shutil
import requests
import gradio as gr
from huggingface_hub import Repository, InferenceClient
HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat"
BOT_NAME = "Falcon"
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"]
EXAMPLES = [
["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"],
["What's the Everett interpretation of quantum mechanics?"],
["Give me a list of the top 10 dive sites you would recommend around the world."],
["Can you tell me more about deep-water soloing?"],
["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"]
]
client = InferenceClient(
API_URL,
headers={"Authorization": f"Bearer {HF_TOKEN}"},
)
# def format_prompt(message, history, system_prompt):
# prompt = ""
# if system_prompt:
# prompt += f"System: {system_prompt}\n"
# for user_prompt, bot_response in history:
# prompt += f"User: {user_prompt}\n"
# prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
# prompt += f"""User: {message}
# Falcon:"""
# return prompt
# seed = 42
# def generate(
# prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
# ):
# temperature = float(temperature)
# if temperature < 1e-2:
# temperature = 1e-2
# top_p = float(top_p)
# global seed
# generate_kwargs = dict(
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# top_p=top_p,
# repetition_penalty=repetition_penalty,
# stop_sequences=STOP_SEQUENCES,
# do_sample=True,
# seed=seed,
# )
# seed = seed + 1
# formatted_prompt = format_prompt(prompt, history, system_prompt)
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
# output = ""
# for response in stream:
# output += response.token.text
# for stop_str in STOP_SEQUENCES:
# if output.endswith(stop_str):
# output = output[:-len(stop_str)]
# output = output.rstrip()
# yield output
# yield output
# return output
# additional_inputs=[
# gr.Textbox("", label="Optional system prompt"),
# gr.Slider(
# label="Temperature",
# value=0.9,
# minimum=0.0,
# maximum=1.0,
# step=0.05,
# interactive=True,
# info="Higher values produce more diverse outputs",
# ),
# gr.Slider(
# label="Max new tokens",
# value=256,
# minimum=0,
# maximum=8192,
# step=64,
# interactive=True,
# info="The maximum numbers of new tokens",
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# value=0.90,
# minimum=0.0,
# maximum=1,
# step=0.05,
# interactive=True,
# info="Higher values sample more low-probability tokens",
# ),
# gr.Slider(
# label="Repetition penalty",
# value=1.2,
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# interactive=True,
# info="Penalize repeated tokens",
# )
# ]
# with gr.Blocks() as demo:
# with gr.Row():
# with gr.Column(scale=0.4):
# gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False)
# with gr.Column():
# gr.Markdown(
# """# Falcon-180B Demo
# **Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!**
# ✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt). It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model.
# 🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon in the future, based on improved datasets and RLHF/RLAIF.
# 👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/)
# ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions!
# ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
# """
# )
# gr.ChatInterface(
# generate,
# examples=EXAMPLES,
# additional_inputs=additional_inputs,
# )
#demo.launch(show_api=True, share=True)
#demo.queue(concurrency_count=100, api_open=False).launch(show_api=True)
def query(system_prompt, user_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
print(temperature, max_new_tokens, top_p, repetition_penalty)
seed = 42
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
stop_sequences=STOP_SEQUENCES,
do_sample=True,
seed=seed,
)
prompt = f"System: {system_prompt}\nUser: {user_prompt}\n"
print(prompt)
print('-----')
#output = client.text_generation(prompt, **generate_kwargs, details=True, return_full_text=False)
#print(output)
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
for stop_str in STOP_SEQUENCES:
if output.endswith(stop_str):
output = output[:-len(stop_str)]
output = output.rstrip()
#yield output
#yield output
print(output)
return output
iface = gr.Interface(
query,
inputs=["text","text","text","text","text","text"],
outputs="text",
)
iface.queue()
iface.launch()