Spaces:
Sleeping
Sleeping
import json | |
import os | |
import shutil | |
import requests | |
import gradio as gr | |
from huggingface_hub import Repository, InferenceClient | |
HF_TOKEN = os.environ.get("HF_TOKEN", None) | |
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat" | |
BOT_NAME = "Falcon" | |
STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"] | |
EXAMPLES = [ | |
["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"], | |
["What's the Everett interpretation of quantum mechanics?"], | |
["Give me a list of the top 10 dive sites you would recommend around the world."], | |
["Can you tell me more about deep-water soloing?"], | |
["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"] | |
] | |
client = InferenceClient( | |
API_URL, | |
headers={"Authorization": f"Bearer {HF_TOKEN}"}, | |
) | |
# def format_prompt(message, history, system_prompt): | |
# prompt = "" | |
# if system_prompt: | |
# prompt += f"System: {system_prompt}\n" | |
# for user_prompt, bot_response in history: | |
# prompt += f"User: {user_prompt}\n" | |
# prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: " | |
# prompt += f"""User: {message} | |
# Falcon:""" | |
# return prompt | |
# seed = 42 | |
# def generate( | |
# prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
# ): | |
# temperature = float(temperature) | |
# if temperature < 1e-2: | |
# temperature = 1e-2 | |
# top_p = float(top_p) | |
# global seed | |
# generate_kwargs = dict( | |
# temperature=temperature, | |
# max_new_tokens=max_new_tokens, | |
# top_p=top_p, | |
# repetition_penalty=repetition_penalty, | |
# stop_sequences=STOP_SEQUENCES, | |
# do_sample=True, | |
# seed=seed, | |
# ) | |
# seed = seed + 1 | |
# formatted_prompt = format_prompt(prompt, history, system_prompt) | |
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
# output = "" | |
# for response in stream: | |
# output += response.token.text | |
# for stop_str in STOP_SEQUENCES: | |
# if output.endswith(stop_str): | |
# output = output[:-len(stop_str)] | |
# output = output.rstrip() | |
# yield output | |
# yield output | |
# return output | |
# additional_inputs=[ | |
# gr.Textbox("", label="Optional system prompt"), | |
# gr.Slider( | |
# label="Temperature", | |
# value=0.9, | |
# minimum=0.0, | |
# maximum=1.0, | |
# step=0.05, | |
# interactive=True, | |
# info="Higher values produce more diverse outputs", | |
# ), | |
# gr.Slider( | |
# label="Max new tokens", | |
# value=256, | |
# minimum=0, | |
# maximum=8192, | |
# step=64, | |
# interactive=True, | |
# info="The maximum numbers of new tokens", | |
# ), | |
# gr.Slider( | |
# label="Top-p (nucleus sampling)", | |
# value=0.90, | |
# minimum=0.0, | |
# maximum=1, | |
# step=0.05, | |
# interactive=True, | |
# info="Higher values sample more low-probability tokens", | |
# ), | |
# gr.Slider( | |
# label="Repetition penalty", | |
# value=1.2, | |
# minimum=1.0, | |
# maximum=2.0, | |
# step=0.05, | |
# interactive=True, | |
# info="Penalize repeated tokens", | |
# ) | |
# ] | |
# with gr.Blocks() as demo: | |
# with gr.Row(): | |
# with gr.Column(scale=0.4): | |
# gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False) | |
# with gr.Column(): | |
# gr.Markdown( | |
# """# Falcon-180B Demo | |
# **Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!** | |
# ✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt). It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model. | |
# 🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon in the future, based on improved datasets and RLHF/RLAIF. | |
# 👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/) | |
# ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions! | |
# ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words. | |
# """ | |
# ) | |
# gr.ChatInterface( | |
# generate, | |
# examples=EXAMPLES, | |
# additional_inputs=additional_inputs, | |
# ) | |
#demo.launch(show_api=True, share=True) | |
#demo.queue(concurrency_count=100, api_open=False).launch(show_api=True) | |
def query(system_prompt, user_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
print(temperature, max_new_tokens, top_p, repetition_penalty) | |
seed = 42 | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
stop_sequences=STOP_SEQUENCES, | |
do_sample=True, | |
seed=seed, | |
) | |
prompt = f"System: {system_prompt}\nUser: {user_prompt}\n" | |
print(prompt) | |
print('-----') | |
#output = client.text_generation(prompt, **generate_kwargs, details=True, return_full_text=False) | |
#print(output) | |
stream = client.text_generation(prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
for stop_str in STOP_SEQUENCES: | |
if output.endswith(stop_str): | |
output = output[:-len(stop_str)] | |
output = output.rstrip() | |
#yield output | |
#yield output | |
print(output) | |
return output | |
iface = gr.Interface( | |
query, | |
inputs=["text","text","text","text","text","text"], | |
outputs="text", | |
) | |
iface.queue() | |
iface.launch() | |