Spaces:
Runtime error
Runtime error
File size: 6,361 Bytes
d54fa91 eb94e92 d54fa91 cbbf201 d54fa91 88e8643 5d51144 8a2c637 cbbf201 5d51144 88e8643 faeec87 cbbf201 8a2c637 cbbf201 eb94e92 faeec87 88e8643 cbbf201 88e8643 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 88e8643 eb94e92 faeec87 eb94e92 5d51144 cbbf201 eb94e92 88e8643 eb94e92 faeec87 eb94e92 5d51144 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 d54fa91 eb94e92 cbbf201 eb94e92 d54fa91 cbbf201 eb94e92 cbbf201 d54fa91 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 eb94e92 cbbf201 d54fa91 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import gradio as gr
from src.core import (
get_table_mapping,
transform_source,
process_csv_text,
generate_mapping_code,
)
MAX_ROWS = 10
import pandas as pd
def generate_step_markdown(step_number: int, subtitle: str, description: str = None):
return gr.Markdown(f"# Step {step_number}\n\n ### {subtitle}\n{description}")
example_df = pd.read_csv("./src/data/synthetic/legal_entries_a.csv")
def load_example_template(template_df, example_df):
return template_df.update(example_df)
# TODO: use tempfile
def export_csv(df, filename):
df.to_csv(filename, index=False)
return gr.File.update(value=filename, visible=True)
# TODO: use tempfile
def export_text(content, filename):
with open(filename, "w") as f:
f.write(content)
return gr.File.update(value=filename, visible=True)
with gr.Blocks() as demo:
gr.Markdown(
"# LLM Data Mapper\n\nThis tool will help you map a source CSV to a template CSV, and then generate python code to transform the source CSV into the template CSV. You can edit all of the values, re-run the processes, and download files along the way."
)
# STEP 1
generate_step_markdown(
1,
"Upload a Template CSV and a Source CSV.",
"The schema will be extracted from the template file and the source file will be transformed to match the schema.",
)
with gr.Row():
with gr.Column():
upload_template_btn = gr.UploadButton(
label="Upload Template File",
file_types=[".csv"],
file_count="single",
variant="primary",
)
load_template_btn = gr.Button(
value="Load Example Template File",
variant="secondary",
)
template_df = gr.Dataframe(max_rows=MAX_ROWS, interactive=False)
upload_template_btn.upload(
fn=process_csv_text, inputs=upload_template_btn, outputs=template_df
)
load_template_btn.click(
lambda _: pd.read_csv("./src/data/actual/template.csv"),
upload_template_btn,
template_df,
)
with gr.Column():
upload_source_button = gr.UploadButton(
label="Upload Source File",
file_types=[".csv"],
file_count="single",
variant="primary",
)
load_source_button = gr.Button(
value="Load Example Source File",
variant="secondary",
)
source_df = gr.Dataframe(max_rows=MAX_ROWS, interactive=False)
upload_source_button.upload(
fn=process_csv_text, inputs=upload_source_button, outputs=source_df
)
load_source_button.click(
lambda _: pd.read_csv("./src/data/actual/table_A.csv"),
upload_source_button,
source_df,
)
# STEP 2
generate_step_markdown(
2,
"Generate mapping from Source to Template.",
"Once generated, you can edit the values directly in the table below and they will be incorporated into the mapping logic.",
)
with gr.Row():
generate_mapping_btn = gr.Button(value="Generate Mapping", variant="primary")
with gr.Row():
table_mapping_df = gr.DataFrame(max_rows=MAX_ROWS, interactive=True)
generate_mapping_btn.click(
fn=get_table_mapping,
inputs=[source_df, template_df],
outputs=[table_mapping_df],
)
with gr.Row():
save_mapping_btn = gr.Button(value="Save Mapping", variant="secondary")
with gr.Row():
csv = gr.File(interactive=False, visible=False)
save_mapping_btn.click(
lambda df: export_csv(df, "source_template_mapping.csv"),
table_mapping_df,
csv,
)
mapping_file = gr.File(label="Downloaded File", visible=False)
mapping_file.change(lambda x: x, mapping_file, table_mapping_df)
# STEP 3
generate_step_markdown(
3,
"Generate python code to transform Source to Template, using the generated mapping.",
"Once generated, you can edit the code directly in the code block below and it will be incorporated into the transformation logic. And this is re-runnable! Update the mapping logic above to try it out.",
)
with gr.Row():
generate_code_btn = gr.Button(
value="Generate Code from Mapping", variant="primary"
)
with gr.Row():
code_block = gr.Code(language="python")
generate_code_btn.click(
fn=generate_mapping_code, inputs=[table_mapping_df], outputs=[code_block]
)
with gr.Row():
save_code_btn = gr.Button(value="Save Code", variant="secondary")
with gr.Row():
text = gr.File(interactive=False, visible=False)
save_code_btn.click(
lambda txt: export_text(txt, "transformation_code.py"), code_block, text
)
code_file = gr.File(label="Downloaded File", visible=False)
code_file.change(lambda x: x, code_file, code_block)
# STEP 4
generate_step_markdown(
4,
"Transform the Source CSV into the Template CSV using the generated code.",
"And this is re-runnable! Update the logic above to try it out.",
)
with gr.Row():
transform_btn = gr.Button(value="Transform Source", variant="primary")
with gr.Row():
source_df_transformed = gr.Dataframe(
label="Source (transformed)", max_rows=MAX_ROWS
)
transform_btn.click(
transform_source,
inputs=[source_df, code_block],
outputs=[source_df_transformed],
)
with gr.Row():
save_transformed_source_btn = gr.Button(
value="Save Transformed Source", variant="secondary"
)
with gr.Row():
csv = gr.File(interactive=False, visible=False)
save_transformed_source_btn.click(
lambda df: export_csv(df, "transformed_source.csv"),
source_df_transformed,
csv,
)
transform_file = gr.File(label="Downloaded File", visible=False)
transform_file.change(lambda x: x, transform_file, source_df_transformed)
demo.launch()
|