Spaces:
Runtime error
Runtime error
File size: 5,020 Bytes
97c1a8e 527cf73 97c1a8e 527cf73 97c1a8e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import random\n",
"import pandas as pd"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"num_records = 100\n",
"first_names = [\"Alan\", \"Miguel\", \"Lakshmi\", \"Chen\", \"Oluwaseun\", \"Dmitri\", \"Nadia\", \"John\", \"Jane\", \"Alice\", \"Terrance\", \"Elena\"]\n",
"last_names = [\"Patel\", \"Rodriguez\", \"Kim\", \"Okafor\", \"Nasser\", \"Ivanov\", \"Smith\", \"Brown\", \"Johnson\", \"Lee\", \"Malcolm\", \"Chatterjee\"]\n",
"# new last names\n",
"judge_last_names = [\"James\", \"Skaarsgard\", \"Oleg\", \"Morgan\", \"Brown\", \"Connor\"]\n",
"case_types = [\"Criminal\", \"Civil\", \"Family\", \"Criminal\", \"Civil\", \"Family\"]\n",
"cities = ['new York', 'LOS angeles', 'chicago', 'houston', 'BOSTON']\n",
"weather_types = ['sunny', 'cloudy', 'rainy', 'snowy']\n",
"get_random_date = lambda: f'2023-0{random.randint(1,9)}-{random.randint(10,28)}'\n",
"get_random_case_number = lambda: f'{random.choice([\"CR\", \"CASE\"])}-{random.randint(1000,9999)}'\n",
"get_random_fee = lambda: random.choice([100, 150, 200, 250])\n",
"\n",
"get_random_int = lambda: random.randint(1000, 9999)\n",
"\n",
"# Define column names with standard casing\n",
"case_date_col = 'case_date'\n",
"lastname_col = 'lastname'\n",
"firstname_col = 'firstname'\n",
"case_type_col = 'case_type'\n",
"case_id_col = 'case_id'\n",
"court_fee_col = 'court_fee'\n",
"jurisdiction_col = 'jurisdiction'\n",
"case_id_prefix = 'CR'\n",
"\n",
"# Use inconsistent casing for values\n",
"legal_entries_a_data = {\n",
" case_date_col: [get_random_date() for _ in range(num_records)],\n",
" lastname_col: [random.choice(last_names) for _ in range(num_records)],\n",
" firstname_col: [random.choice(first_names) for _ in range(num_records)],\n",
" case_type_col: [random.choice(case_types) for _ in range(num_records)],\n",
" case_id_col: [f'{case_id_prefix}-{get_random_int()}' for _ in range(num_records)],\n",
" court_fee_col: [get_random_fee() for _ in range(num_records)],\n",
" jurisdiction_col: [random.choice(cities) for _ in range(num_records)],\n",
" 'judge_last_name': [random.choice(judge_last_names) for _ in range(num_records)]\n",
"}\n",
"\n",
"legal_entries_a = pd.DataFrame(legal_entries_a_data)\n",
"\n",
"# Apply the transform_row function for legal_entries_A to create legal_entries_B\n",
"def transform_row(row):\n",
" return pd.Series({\n",
" 'Date_of_Case' : row[case_date_col].replace(\"-\", \"/\"),\n",
" 'Fee' : float(row[court_fee_col]),\n",
" 'FullName' : f\"{row[firstname_col]} {row[lastname_col]}\".title(),\n",
" 'CaseNumber' : f'{row[case_id_col].replace(case_id_prefix, \"case-\")}',\n",
" 'CaseKind' : row[case_type_col].capitalize(),\n",
" 'Date_of_Case' : row[case_date_col].replace(\"-\", \"/\"),\n",
" 'Location' : row[jurisdiction_col].replace(\" \", \"\")[:random.randint(4,5)].upper(),\n",
" 'Weather': random.choice(weather_types)\n",
" })\n",
"\n",
"def transform_to_template(row):\n",
" return pd.Series({\n",
" 'CaseDate': row[case_date_col],\n",
" 'FullName': f\"{row[firstname_col]} {row[lastname_col]}\",\n",
" 'CaseType': \"Family\" if \"Fam\" in row[case_type_col] else \"Civil\" if 'Civ' in row[case_type_col] else row[case_type_col].capitalize(),\n",
" 'CaseID': f'{row[case_id_col].replace(case_id_prefix, \"CASE\")}',\n",
" 'Fee': row[court_fee_col],\n",
" 'Jurisdiction': row[jurisdiction_col].title()\n",
" })\n",
"\n",
"legal_entries_b = legal_entries_a.apply(transform_row, axis=1)\n",
"legal_template = legal_entries_a.apply(transform_to_template, axis=1)\n",
"\n",
"data_dir_path = os.path.join(os.getcwd(), \"data\")\n",
"legal_entries_a.to_csv(os.path.join(data_dir_path, \"legal_entries_a.csv\"), index=False)\n",
"legal_entries_b.to_csv(os.path.join(data_dir_path, \"legal_entries_b.csv\"), index=False)\n",
"legal_template.to_csv(os.path.join(data_dir_path, \"legal_template.csv\"), index=False)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "venv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
|