rtdetr / app.py
slaypni's picture
Initial commit
e5b2856
from glob import glob
import os
from timeit import default_timer as timer
import gradio as gr
import numpy as np
import onnxruntime as ort
from PIL import ImageOps
from utils import draw_overlay
sessions = {
"rtdetr_18vd": ort.InferenceSession("models/rtdetr_r18vd.onnx"),
"rtdetr_r50vd": ort.InferenceSession("models/rtdetr_r50vd.onnx"),
"rtdetr_r101vd": ort.InferenceSession("models/rtdetr_r101vd.onnx"),
}
def run(image, threshold=0.5, model="rtdetr_18vd"):
im = ImageOps.pad(image, (640, 640), color="black")
input = np.asarray(im)
input = np.transpose(input, (2, 0, 1))
input = np.expand_dims(input, axis=0)
input = input.astype(np.float32) / 255
inference_start = timer()
labels, boxes, scores = sessions[model].run(
None,
{"images": input, "orig_target_sizes": np.array([[640, 640]])},
)
inference_seconds = timer() - inference_start
draw_overlay(im, threshold, labels, boxes, scores)
return im, labels[0], boxes[0], scores[0], inference_seconds * 1000
demo = gr.Interface(
run,
inputs=[
gr.Image(type="pil", label="image"),
gr.Slider(0, 1, 0.5, label="score threshold"),
gr.Dropdown(
["rtdetr_18vd", "rtdetr_r50vd", "rtdetr_r101vd"],
value="rtdetr_18vd",
label="model",
),
],
outputs=[
gr.Image(label="result"),
gr.Textbox(label="labels"),
gr.Textbox(label="boxes"),
gr.Textbox(label="scores"),
gr.Textbox(label="inference ms"),
],
examples=[glob(os.path.join("samples", "*"))],
title="RT-DETR",
description="ONNX exported from official pretrained models on COCO + Objects365",
)
demo.launch()