Upload 3 files
Browse files- aifunc.py +46 -0
- main.py +34 -0
- sapmle.txt +6 -0
aifunc.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import keyboard
|
3 |
+
import time
|
4 |
+
import requests
|
5 |
+
os.environ["HUGGINGFACEHUB_API_TOKEN"] = "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"
|
6 |
+
#from langchain.vectorstores.weaviate import Weaviate
|
7 |
+
from langchain.document_loaders import TextLoader #for textfiles
|
8 |
+
from langchain.text_splitter import CharacterTextSplitter #text splitter
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings #for using HugginFace models
|
10 |
+
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
|
11 |
+
from langchain.vectorstores import FAISS #facebook vectorizationfrom langchain.chains.question_answering import load_qa_chain
|
12 |
+
from langchain.chains.question_answering import load_qa_chain
|
13 |
+
from langchain import HuggingFaceHub
|
14 |
+
from langchain.document_loaders import UnstructuredPDFLoader #load pdf
|
15 |
+
from langchain.indexes import VectorstoreIndexCreator #vectorize db index with chromadb
|
16 |
+
from langchain.chains import RetrievalQA
|
17 |
+
from langchain.document_loaders import UnstructuredURLLoader #load urls into docoument-loader
|
18 |
+
import requests
|
19 |
+
import textwrap
|
20 |
+
from langchain.document_loaders import TextLoader
|
21 |
+
|
22 |
+
loader = TextLoader('./KS-all-info_rev1.txt')
|
23 |
+
documents = loader.load()
|
24 |
+
def wrap_text_preserve_newlines(text, width=110):
|
25 |
+
# Split the input text into lines based on newline characters
|
26 |
+
lines = text.split('\n')
|
27 |
+
# Wrap each line individually
|
28 |
+
wrapped_lines = [textwrap.fill(line, width=width) for line in lines]
|
29 |
+
# Join the wrapped lines back together using newline characters
|
30 |
+
wrapped_text = '\n'.join(wrapped_lines)
|
31 |
+
return wrapped_text
|
32 |
+
text_splitter = CharacterTextSplitter(chunk_size=3000, chunk_overlap=10)
|
33 |
+
docs = text_splitter.split_documents(documents)
|
34 |
+
# Embeddings
|
35 |
+
embeddings = HuggingFaceEmbeddings()
|
36 |
+
#Create the vectorized db
|
37 |
+
# Vectorstore: https://python.langchain.com/en/latest/modules/indexes/vectorstores.html
|
38 |
+
db = FAISS.from_documents(docs, embeddings)
|
39 |
+
llm=HuggingFaceHub(repo_id="MBZUAI/LaMini-Flan-T5-783M", model_kwargs={"temperature":0, "max_length":512})
|
40 |
+
chain = load_qa_chain(llm, chain_type="stuff")
|
41 |
+
def run_chain(query):
|
42 |
+
result=chain.run(input_documents=docs, question=query)
|
43 |
+
return result
|
44 |
+
|
45 |
+
|
46 |
+
#keyboard.unhook_all()###########################
|
main.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from aifunc import run_chain
|
3 |
+
|
4 |
+
def main():
|
5 |
+
st.title("DentalGPT For Everybody")
|
6 |
+
|
7 |
+
# File upload window
|
8 |
+
uploaded_file = st.file_uploader("Upload files to ML")
|
9 |
+
|
10 |
+
# Text input window
|
11 |
+
user_input = st.text_input("Enter text")
|
12 |
+
|
13 |
+
# Process uploaded file and user input
|
14 |
+
result = process_data(uploaded_file, user_input)
|
15 |
+
|
16 |
+
# Display result in a read-only text field
|
17 |
+
st.text_area("Result", value=result, disabled=True)
|
18 |
+
|
19 |
+
def process_data(file, input_text):
|
20 |
+
# Perform data processing here based on the uploaded file and user input
|
21 |
+
# Return the processed result as a string
|
22 |
+
# Example implementation:
|
23 |
+
if file is not None:
|
24 |
+
file_contents = file.read()
|
25 |
+
# Process file contents
|
26 |
+
|
27 |
+
# Process user input
|
28 |
+
# ...
|
29 |
+
|
30 |
+
# Return the result
|
31 |
+
return "Processed result"
|
32 |
+
|
33 |
+
if __name__ == '__main__':
|
34 |
+
main()
|
sapmle.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
In his follow-up to 'Symbiosis',Sterling takes a look at the subtle, unnoticed presence and influence of AI in our everyday lives.
|
2 |
+
It reveals how AI has become woven into our routines, often without our explicit realization.Dr. Cortez takes readers on a journey exploring the controversial topic of AI consciousness.
|
3 |
+
The book provides compelling arguments for and against the possibility of true AI sentience.In her second book, Dr. Simmons delves deeper into the ethical considerations surrounding AI development and deployment.
|
4 |
+
It is an eye-opening examination of the dilemmas faced by developers, policymakers, and society at large.Sterling explores the potential for harmonious coexistence between humans and artificial intelligence.
|
5 |
+
The book discusses how AI can be integrated into society in a beneficial and non-disruptive manner.A comprehensive analysis of the evolution of artificial intelligence, from its inception to its future prospects.
|
6 |
+
Dr. Simmons covers ethical considerations, potentials, and threats posed by AI.
|