Angelawork commited on
Commit
51e6078
·
1 Parent(s): 56950e0

utilities and global variables

Browse files
Files changed (2) hide show
  1. globals.py +31 -0
  2. utility.py +33 -0
globals.py ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ HF_TOKEN = os.getenv('HF_TOKEN')
4
+
5
+ """T5"""
6
+ T5_FILE_NAME = "model.safetensors"
7
+ simplet5_base_URL="angel1987/simplet5_metaphor_dev1"
8
+ simplet5_large_URL="angel1987/simplet5_metaphor_dev2"
9
+
10
+ """models"""
11
+ gemma_2b_URL = "google/gemma-2b-it"
12
+ Qwen_URL="Qwen/Qwen1.5-0.5B-Chat"
13
+ falcon_7b_URL = "tiiuae/falcon-7b-instruct"
14
+ falcon_1b_URL = "tiiuae/falcon-rw-1b"
15
+
16
+ if torch.cuda.is_available():
17
+ device_map = "auto" #use GPU if available
18
+ else:
19
+ device_map = "cpu"
20
+ print("No GPU found, using CPU.")
21
+
22
+ TITLE = "LiteraLingo_TopK_dev"
23
+ DESCRIPTION = "Figurative sentences to literal meanings."
24
+
25
+ EXAMPLE = [["gemma", "She has a heart of gold",256],
26
+ ["gemma", "Time flies when you're having fun",128],
27
+ ["falcon_api", "The sky is the limit",200]
28
+ ]
29
+ gemma_PREFIX="Explain literal meaning of sentence: {fig}, Literal meaning:"
30
+ falcon_PREFIX="Paraphrase the following sentences from figurative to literal meaning: {fig}"
31
+ simplet5_PREFIX="Give the literal meaning of the sentence: {fig}"
utility.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import urllib.request
3
+ import gradio as gr
4
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
5
+ import huggingface_hub
6
+ import re
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM
8
+ import torch
9
+ import time
10
+ import transformers
11
+ import requests
12
+ import globals
13
+
14
+ def fetch_model(url, filename):
15
+ if not os.path.isfile(filename):
16
+ urllib.request.urlretrieve(url, filename)
17
+ print("File downloaded successfully.")
18
+ else:
19
+ print("File already exists.")
20
+
21
+ def api_query(API_URL, headers, payload):
22
+ response = requests.post(API_URL, headers=headers, json=payload)
23
+ return response.json()
24
+
25
+ def post_process(model_output,input):
26
+ start_pos = model_output.find(input)
27
+ if start_pos != -1:
28
+ answer = model_output[start_pos + len(input):].strip()
29
+ else:
30
+ answer = model_output
31
+ print("'Literal meaning:' not found in the text.")
32
+ answer.replace("\n", "")
33
+ return answer