import os import urllib.request import gradio as gr from transformers import T5Tokenizer, T5ForConditionalGeneration import huggingface_hub import re from transformers import AutoTokenizer, AutoModelForCausalLM import torch import time import transformers import requests import globals from utility import * """set up""" huggingface_hub.login(token=globals.HF_TOKEN) gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL) gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL) falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload") falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload") def get_model(model_typ): if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]: raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".') if model_typ=="gemma": tokenizer = gemma_tokenizer model = gemma_model prefix = globals.gemma_PREFIX elif model_typ=="falcon_api": prefix = globals.falcon_PREFIX model=None tokenizer = None elif model_typ=="falcon": tokenizer = falcon_tokenizer model = falcon_model prefix = globals.falcon_PREFIX elif model_typ in ["simplet5_base","simplet5_large"]: prefix = globals.simplet5_PREFIX URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL T5_MODEL_PATH = f"https://huggingface.co/{URL}/resolve/main/{globals.T5_FILE_NAME}" fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME) tokenizer = T5Tokenizer.from_pretrained(URL) model = T5ForConditionalGeneration.from_pretrained(URL) return model, tokenizer, prefix def topk_query(model_typ="gemma",prompt="She has a heart of gold",temperature=0.7,max_length=256): if model_typ not in ["gemma","simplet5_base", "simplet5_large"]: raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".') model, tokenizer, prefix = get_model(model_typ) start_time = time.time() input = prefix.replace("{fig}", prompt) print(f"Input to model: \n{input}") if model_typ in ["simplet5_base", "simplet5_large"]: inputs = tokenizer(input, return_tensors="pt") outputs = model.generate( inputs["input_ids"], temperature=temperature, max_length=max_length, num_beams=5, num_return_sequences=5, # Generate 5 responses early_stopping=True ) response = [tokenizer.decode(output, skip_special_tokens=True) for output in outputs] answer = [response.replace(input, "").strip() for response in response] elif model_typ=="gemma": inputs = tokenizer(input, return_tensors="pt") generate_ids = gemma_model.generate( inputs.input_ids, max_length=max_length, do_sample=True, top_k=50, temperature=temperature, num_return_sequences=5, eos_token_id=gemma_tokenizer.eos_token_id ) outputs = gemma_tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False) print(f"Model original output:{outputs}\n") answer = [post_process(output,input).replace("\n", "") for output in outputs] # TODO: falcon's outputs dont have much differences, not used in topk response # elif model_typ=="falcon_api": # API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct" # headers = {"Authorization": f"Bearer {access_token}"} # response = api_query(API_URL=API_URL, headers=headers, payload={ # "inputs": input, # "parameters": { # "temperature": temperature, # "top_k": 50, # "num_return_sequences": 5 # } # }) # print(response) # answer = [post_process(item["generated_text"], input) for item in response] else: raise ValueError('Invalid model type. Choose "gemma", "simplet5_base", "simplet5_large".') print(f"Time taken: {time.time()-start_time:.2f} seconds") print(f"processed model output: {answer}") return answer topk_iface = gr.Interface( fn=topk_query, inputs=[ gr.Dropdown( choices=["gemma", "simplet5_base", "simplet5_large"], label="Model Type", value="gemma" ), gr.Textbox(label="Prompt", placeholder="Enter your prompt here"), gr.Slider(minimum=0.1, maximum=1.0, step=0.1, value=0.7, label="Temperature"), gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length") ], outputs=[ gr.Textbox(label="Response 1"), gr.Textbox(label="Response 2"), gr.Textbox(label="Response 3"), gr.Textbox(label="Response 4"), gr.Textbox(label="Response 5") ],theme=gr.themes.Soft(), title=globals.TITLE, description="Generate multiple responses (top 5) based on input sentence, prefix, and temperature. Literal meanings/explanations are provided based on the input figurative sentence.", examples=[ ["gemma", "Time flies when you're having fun",0.7], ["simplet5_large", "She has a heart of gold",0.5], ["gemma", "The sky is the limit",0.6] ] ) if __name__ == '__main__': topk_iface.launch()