Spaces:
Sleeping
Sleeping
from pymongo import MongoClient | |
# error since Jan 2024, from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain_openai import OpenAIEmbeddings | |
# error since Jan 2024, from langchain.vectorstores import MongoDBAtlasVectorSearch | |
from langchain_community.vectorstores import MongoDBAtlasVectorSearch | |
# error since Jan 2024, from langchain.document_loaders import PyPDFLoader | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
import os | |
mongo_uri = os.getenv("MONGO_URI") | |
openai_api_key = os.getenv("OPENAI_API_KEY") | |
client = MongoClient(mongo_uri) | |
dbName = "langchain_demo" | |
collectionName = "collection_of_text_blobs" | |
collection = client[dbName][collectionName] | |
#loader = DirectoryLoader( './sample_files', glob="./*.txt", show_progress=True) | |
loader = PyPDFLoader("https://arxiv.org/pdf/2303.08774.pdf") | |
data = loader.load() | |
text_splitter = RecursiveCharacterTextSplitter(chunk_size = 500, chunk_overlap = 0) | |
docs = text_splitter.split_documents(data) | |
#embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) | |
#vectorStore = MongoDBAtlasVectorSearch.from_documents( data, embeddings, collection=collection, index_name="default" ) | |
# insert the documents in MongoDB Atlas Vector Search | |
x = MongoDBAtlasVectorSearch.from_documents( | |
documents=docs, | |
embedding=OpenAIEmbeddings(openai_api_key=openai_api_key, disallowed_special=()), | |
collection=collection, | |
index_name="default" | |
) | |