import gradio as gr from fastai.vision.all import * def is_cat(x): return x[0].isupper() categories = ('Dog', 'Cat') learn = load_learner('model.pkl') def classify_image(img): pred , idx , probs = learn.predict(img) return dict(zip(categories , map(float,probs))) image = gr.Image() label = gr.Label() examples = ['dog.jpg', 'cat.jpg', 'dumo.jpg'] demo = gr.Interface(fn=classify_image, inputs=image, outputs= label) demo.launch(inline = False) m = learn.model ps = list(m.parameters()) ps[1]