updated numerical feature engineering
Browse files- src/ProcessOneSingleCampaign.py +289 -41
src/ProcessOneSingleCampaign.py
CHANGED
@@ -1,3 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
# Set gensim data directory to a writable location at the very start
|
3 |
os.environ['GENSIM_DATA_DIR'] = '/tmp/gensim-data'
|
@@ -9,29 +25,57 @@ except Exception as e:
|
|
9 |
|
10 |
import json
|
11 |
import numpy as np
|
12 |
-
from typing import Dict
|
13 |
import torch
|
14 |
from transformers import AutoTokenizer, AutoModel
|
15 |
import gc
|
16 |
import gensim.downloader
|
17 |
|
18 |
class CampaignProcessor:
|
19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
self.data = data
|
21 |
self.categories = sorted(list(set(camp.get('raw_category', '') for camp in self.data)))
|
22 |
self.lazy_load = lazy_load
|
23 |
|
24 |
-
|
25 |
-
self.
|
26 |
-
self.
|
27 |
-
self.
|
28 |
-
self.
|
|
|
29 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
30 |
|
|
|
31 |
if not lazy_load:
|
32 |
self._load_models()
|
33 |
|
34 |
def _load_models(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
print("Loading NLP models...")
|
36 |
# Cache models locally to avoid downloading every time
|
37 |
cache_dir = "/tmp/model_cache"
|
@@ -120,33 +164,60 @@ class CampaignProcessor:
|
|
120 |
raise e
|
121 |
|
122 |
def _ensure_models_loaded(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
if self.model is None or self.tokenizer is None or self.RiskandBlurb_model is None or self.RiskandBlurb_tokenizer is None or self.glove is None:
|
124 |
self._load_models()
|
125 |
|
126 |
-
def _process_text_embedding(self, text, max_length, tokenizer, model):
|
127 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
if self.device.type == 'cuda':
|
129 |
torch.cuda.empty_cache()
|
130 |
gc.collect()
|
131 |
|
|
|
132 |
inputs = tokenizer(text,
|
133 |
padding=True,
|
134 |
truncation=True,
|
135 |
max_length=max_length,
|
136 |
return_tensors="pt")
|
137 |
|
|
|
138 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
139 |
|
|
|
140 |
with torch.no_grad():
|
141 |
outputs = model(**inputs)
|
142 |
|
|
|
143 |
attention_mask = inputs['attention_mask']
|
144 |
token_embeddings = outputs.last_hidden_state
|
145 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
146 |
sentence_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
147 |
|
|
|
148 |
embedding = sentence_embeddings.cpu().numpy()
|
149 |
|
|
|
150 |
del inputs, outputs, token_embeddings, sentence_embeddings
|
151 |
if self.device.type == 'cuda':
|
152 |
torch.cuda.empty_cache()
|
@@ -154,8 +225,17 @@ class CampaignProcessor:
|
|
154 |
|
155 |
return embedding[0]
|
156 |
|
157 |
-
def _get_glove_embedding(self, text, dim=100):
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
if not text:
|
160 |
return np.zeros(dim)
|
161 |
|
@@ -164,16 +244,30 @@ class CampaignProcessor:
|
|
164 |
words = text.split()
|
165 |
vectors = []
|
166 |
|
|
|
167 |
for word in words:
|
168 |
if word in self.glove:
|
169 |
vectors.append(self.glove[word])
|
170 |
|
|
|
171 |
if vectors:
|
172 |
return np.mean(vectors, axis=0)
|
173 |
else:
|
174 |
return np.zeros(dim)
|
175 |
|
176 |
-
def process_description_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
self._ensure_models_loaded()
|
178 |
|
179 |
try:
|
@@ -185,7 +279,17 @@ class CampaignProcessor:
|
|
185 |
print(f"Error processing description: {str(e)}")
|
186 |
return np.zeros(768), 0
|
187 |
|
188 |
-
def process_riskandchallenges_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
self._ensure_models_loaded()
|
190 |
|
191 |
try:
|
@@ -195,7 +299,17 @@ class CampaignProcessor:
|
|
195 |
print(f"Error processing risk statement: {str(e)}")
|
196 |
return np.zeros(384)
|
197 |
|
198 |
-
def process_blurb(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
199 |
self._ensure_models_loaded()
|
200 |
|
201 |
try:
|
@@ -205,7 +319,16 @@ class CampaignProcessor:
|
|
205 |
print(f"Error processing blurb: {str(e)}")
|
206 |
return np.zeros(384)
|
207 |
|
208 |
-
def process_category(self, campaign: Dict):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
try:
|
210 |
# All categories in the dataset
|
211 |
fixed_categories = [
|
@@ -222,7 +345,17 @@ class CampaignProcessor:
|
|
222 |
print(f"Error processing category: {str(e)}")
|
223 |
return [0] * 15
|
224 |
|
225 |
-
def process_subcategory_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
226 |
self._ensure_models_loaded()
|
227 |
|
228 |
try:
|
@@ -232,7 +365,17 @@ class CampaignProcessor:
|
|
232 |
print(f"Error processing subcategory: {str(e)}")
|
233 |
return np.zeros(100)
|
234 |
|
235 |
-
def process_country_embedding(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
236 |
self._ensure_models_loaded()
|
237 |
|
238 |
try:
|
@@ -242,19 +385,131 @@ class CampaignProcessor:
|
|
242 |
print(f"Error processing country: {str(e)}")
|
243 |
return np.zeros(100)
|
244 |
|
245 |
-
def process_funding_goal(self, campaign: Dict, idx: int):
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
def process_previous_funding_goal(self, campaign: Dict, idx: int):
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
def process_previous_pledged(self, campaign: Dict, idx: int):
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
-
def calculate_previous_sucess_rate(self, campaign: Dict, idx: int):
|
255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
257 |
-
def process_campaign(self, campaign: Dict, idx: int):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
self._ensure_models_loaded()
|
259 |
|
260 |
# Generate embeddings for text fields
|
@@ -274,22 +529,15 @@ class CampaignProcessor:
|
|
274 |
'country_embedding': self.process_country_embedding(campaign, idx).tolist()
|
275 |
}
|
276 |
|
277 |
-
# Process
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
]
|
284 |
-
|
285 |
-
# Process numerical features or use values from input
|
286 |
-
for field_name, processor_func in numerical_fields:
|
287 |
-
if field_name in campaign:
|
288 |
-
result[field_name] = campaign[field_name]
|
289 |
-
else:
|
290 |
-
result[field_name] = processor_func(campaign, idx)
|
291 |
|
292 |
-
#
|
293 |
for field in ['image_count', 'video_count', 'campaign_duration', 'previous_projects_count']:
|
294 |
result[field] = int(campaign.get(field, 0))
|
295 |
|
|
|
1 |
+
"""
|
2 |
+
Campaign Data Processor for Kickstarter Prediction
|
3 |
+
|
4 |
+
This module handles the preprocessing of raw Kickstarter campaign data,
|
5 |
+
generating text embeddings and preparing numerical features for prediction.
|
6 |
+
|
7 |
+
Key functionality:
|
8 |
+
- Longformer embeddings for project descriptions
|
9 |
+
- Sentence transformer embeddings for blurbs and risk statements
|
10 |
+
- GloVe embeddings for categories and countries
|
11 |
+
- Normalization of numerical features
|
12 |
+
|
13 |
+
Author: Angus Fung
|
14 |
+
Date: April 2025
|
15 |
+
"""
|
16 |
+
|
17 |
import os
|
18 |
# Set gensim data directory to a writable location at the very start
|
19 |
os.environ['GENSIM_DATA_DIR'] = '/tmp/gensim-data'
|
|
|
25 |
|
26 |
import json
|
27 |
import numpy as np
|
28 |
+
from typing import Dict, List, Tuple, Any, Optional
|
29 |
import torch
|
30 |
from transformers import AutoTokenizer, AutoModel
|
31 |
import gc
|
32 |
import gensim.downloader
|
33 |
|
34 |
class CampaignProcessor:
|
35 |
+
"""
|
36 |
+
Processor for Kickstarter campaign data.
|
37 |
+
|
38 |
+
This class handles the preprocessing of raw campaign data, transforming
|
39 |
+
text and categorical features into embeddings using various NLP models
|
40 |
+
and preparing numerical features for the prediction model.
|
41 |
+
"""
|
42 |
+
|
43 |
+
def __init__(self, data: List[Dict], lazy_load: bool = False):
|
44 |
+
"""
|
45 |
+
Initialize the CampaignProcessor.
|
46 |
+
|
47 |
+
Args:
|
48 |
+
data (List[Dict]): List of campaign dictionaries to process
|
49 |
+
lazy_load (bool): If True, models will be loaded only when needed
|
50 |
+
rather than at initialization time
|
51 |
+
"""
|
52 |
self.data = data
|
53 |
self.categories = sorted(list(set(camp.get('raw_category', '') for camp in self.data)))
|
54 |
self.lazy_load = lazy_load
|
55 |
|
56 |
+
# Initialize model variables (to be loaded later)
|
57 |
+
self.tokenizer = None # Longformer tokenizer for descriptions
|
58 |
+
self.model = None # Longformer model for descriptions
|
59 |
+
self.RiskandBlurb_tokenizer = None # MiniLM tokenizer for blurb and risk
|
60 |
+
self.RiskandBlurb_model = None # MiniLM model for blurb and risk
|
61 |
+
self.glove = None # GloVe word vectors for categories and countries
|
62 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
63 |
|
64 |
+
# Load models at initialization if not using lazy loading
|
65 |
if not lazy_load:
|
66 |
self._load_models()
|
67 |
|
68 |
def _load_models(self):
|
69 |
+
"""
|
70 |
+
Load all NLP models required for processing campaign data.
|
71 |
+
|
72 |
+
This method loads:
|
73 |
+
- Longformer for description embeddings
|
74 |
+
- MiniLM for blurb and risk embeddings
|
75 |
+
- GloVe for category and country embeddings
|
76 |
+
|
77 |
+
Models are cached to avoid reloading and moved to the appropriate device.
|
78 |
+
"""
|
79 |
print("Loading NLP models...")
|
80 |
# Cache models locally to avoid downloading every time
|
81 |
cache_dir = "/tmp/model_cache"
|
|
|
164 |
raise e
|
165 |
|
166 |
def _ensure_models_loaded(self):
|
167 |
+
"""
|
168 |
+
Ensure all required models are loaded.
|
169 |
+
|
170 |
+
This is called before any processing to make sure models are ready,
|
171 |
+
particularly important when using lazy loading.
|
172 |
+
"""
|
173 |
if self.model is None or self.tokenizer is None or self.RiskandBlurb_model is None or self.RiskandBlurb_tokenizer is None or self.glove is None:
|
174 |
self._load_models()
|
175 |
|
176 |
+
def _process_text_embedding(self, text: str, max_length: int, tokenizer: AutoTokenizer, model: AutoModel) -> np.ndarray:
|
177 |
+
"""
|
178 |
+
Generate embedding for text using the specified model and tokenizer.
|
179 |
+
|
180 |
+
This method handles tokenization, model inference, and pooling to
|
181 |
+
create a single vector representation of the input text.
|
182 |
+
|
183 |
+
Args:
|
184 |
+
text (str): Text to embed
|
185 |
+
max_length (int): Maximum token length for the model
|
186 |
+
tokenizer (AutoTokenizer): Tokenizer to use
|
187 |
+
model (AutoModel): Model to use for embedding generation
|
188 |
+
|
189 |
+
Returns:
|
190 |
+
np.ndarray: Embedding vector for the text
|
191 |
+
"""
|
192 |
+
# Clean up memory before processing
|
193 |
if self.device.type == 'cuda':
|
194 |
torch.cuda.empty_cache()
|
195 |
gc.collect()
|
196 |
|
197 |
+
# Tokenize the text
|
198 |
inputs = tokenizer(text,
|
199 |
padding=True,
|
200 |
truncation=True,
|
201 |
max_length=max_length,
|
202 |
return_tensors="pt")
|
203 |
|
204 |
+
# Move inputs to device
|
205 |
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
206 |
|
207 |
+
# Generate embeddings
|
208 |
with torch.no_grad():
|
209 |
outputs = model(**inputs)
|
210 |
|
211 |
+
# Mean pooling - take average of all token embeddings
|
212 |
attention_mask = inputs['attention_mask']
|
213 |
token_embeddings = outputs.last_hidden_state
|
214 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
215 |
sentence_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
216 |
|
217 |
+
# Convert to numpy array
|
218 |
embedding = sentence_embeddings.cpu().numpy()
|
219 |
|
220 |
+
# Clean up to prevent memory leaks
|
221 |
del inputs, outputs, token_embeddings, sentence_embeddings
|
222 |
if self.device.type == 'cuda':
|
223 |
torch.cuda.empty_cache()
|
|
|
225 |
|
226 |
return embedding[0]
|
227 |
|
228 |
+
def _get_glove_embedding(self, text: str, dim: int = 100) -> np.ndarray:
|
229 |
+
"""
|
230 |
+
Generate GloVe embedding for a text by averaging word vectors.
|
231 |
+
|
232 |
+
Args:
|
233 |
+
text (str): Text to embed
|
234 |
+
dim (int): Dimension of the GloVe embeddings
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
np.ndarray: Averaged GloVe embedding for the text
|
238 |
+
"""
|
239 |
if not text:
|
240 |
return np.zeros(dim)
|
241 |
|
|
|
244 |
words = text.split()
|
245 |
vectors = []
|
246 |
|
247 |
+
# Collect vectors for words that exist in the vocabulary
|
248 |
for word in words:
|
249 |
if word in self.glove:
|
250 |
vectors.append(self.glove[word])
|
251 |
|
252 |
+
# Average vectors if any exist, otherwise return zeros
|
253 |
if vectors:
|
254 |
return np.mean(vectors, axis=0)
|
255 |
else:
|
256 |
return np.zeros(dim)
|
257 |
|
258 |
+
def process_description_embedding(self, campaign: Dict, idx: int) -> Tuple[np.ndarray, int]:
|
259 |
+
"""
|
260 |
+
Process the project description to generate a Longformer embedding.
|
261 |
+
|
262 |
+
Args:
|
263 |
+
campaign (Dict): Campaign data
|
264 |
+
idx (int): Index of the campaign
|
265 |
+
|
266 |
+
Returns:
|
267 |
+
Tuple containing:
|
268 |
+
- np.ndarray: Longformer embedding of the description
|
269 |
+
- int: Word count of the description
|
270 |
+
"""
|
271 |
self._ensure_models_loaded()
|
272 |
|
273 |
try:
|
|
|
279 |
print(f"Error processing description: {str(e)}")
|
280 |
return np.zeros(768), 0
|
281 |
|
282 |
+
def process_riskandchallenges_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
283 |
+
"""
|
284 |
+
Process the risks and challenges section to generate a MiniLM embedding.
|
285 |
+
|
286 |
+
Args:
|
287 |
+
campaign (Dict): Campaign data
|
288 |
+
idx (int): Index of the campaign
|
289 |
+
|
290 |
+
Returns:
|
291 |
+
np.ndarray: MiniLM embedding of the risks section
|
292 |
+
"""
|
293 |
self._ensure_models_loaded()
|
294 |
|
295 |
try:
|
|
|
299 |
print(f"Error processing risk statement: {str(e)}")
|
300 |
return np.zeros(384)
|
301 |
|
302 |
+
def process_blurb(self, campaign: Dict, idx: int) -> np.ndarray:
|
303 |
+
"""
|
304 |
+
Process the project blurb to generate a MiniLM embedding.
|
305 |
+
|
306 |
+
Args:
|
307 |
+
campaign (Dict): Campaign data
|
308 |
+
idx (int): Index of the campaign
|
309 |
+
|
310 |
+
Returns:
|
311 |
+
np.ndarray: MiniLM embedding of the blurb
|
312 |
+
"""
|
313 |
self._ensure_models_loaded()
|
314 |
|
315 |
try:
|
|
|
319 |
print(f"Error processing blurb: {str(e)}")
|
320 |
return np.zeros(384)
|
321 |
|
322 |
+
def process_category(self, campaign: Dict) -> List[int]:
|
323 |
+
"""
|
324 |
+
Process the project category into a one-hot encoding.
|
325 |
+
|
326 |
+
Args:
|
327 |
+
campaign (Dict): Campaign data
|
328 |
+
|
329 |
+
Returns:
|
330 |
+
List[int]: One-hot encoding of the category
|
331 |
+
"""
|
332 |
try:
|
333 |
# All categories in the dataset
|
334 |
fixed_categories = [
|
|
|
345 |
print(f"Error processing category: {str(e)}")
|
346 |
return [0] * 15
|
347 |
|
348 |
+
def process_subcategory_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
349 |
+
"""
|
350 |
+
Process the project subcategory to generate a GloVe embedding.
|
351 |
+
|
352 |
+
Args:
|
353 |
+
campaign (Dict): Campaign data
|
354 |
+
idx (int): Index of the campaign
|
355 |
+
|
356 |
+
Returns:
|
357 |
+
np.ndarray: GloVe embedding of the subcategory
|
358 |
+
"""
|
359 |
self._ensure_models_loaded()
|
360 |
|
361 |
try:
|
|
|
365 |
print(f"Error processing subcategory: {str(e)}")
|
366 |
return np.zeros(100)
|
367 |
|
368 |
+
def process_country_embedding(self, campaign: Dict, idx: int) -> np.ndarray:
|
369 |
+
"""
|
370 |
+
Process the project country to generate a GloVe embedding.
|
371 |
+
|
372 |
+
Args:
|
373 |
+
campaign (Dict): Campaign data
|
374 |
+
idx (int): Index of the campaign
|
375 |
+
|
376 |
+
Returns:
|
377 |
+
np.ndarray: GloVe embedding of the country
|
378 |
+
"""
|
379 |
self._ensure_models_loaded()
|
380 |
|
381 |
try:
|
|
|
385 |
print(f"Error processing country: {str(e)}")
|
386 |
return np.zeros(100)
|
387 |
|
388 |
+
def process_funding_goal(self, campaign: Dict, idx: int) -> float:
|
389 |
+
"""
|
390 |
+
Process campaign funding goal with logarithmic compression.
|
391 |
+
|
392 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
393 |
+
preserving relative differences between funding goals.
|
394 |
+
|
395 |
+
Args:
|
396 |
+
campaign (Dict): Campaign data
|
397 |
+
idx (int): Index of the campaign
|
398 |
+
|
399 |
+
Returns:
|
400 |
+
float: The transformed funding goal
|
401 |
+
"""
|
402 |
+
try:
|
403 |
+
goal = float(campaign.get('funding_goal', 0))
|
404 |
+
|
405 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
406 |
+
transformed_goal = np.log1p(goal)/np.log(10)
|
407 |
+
|
408 |
+
return transformed_goal
|
409 |
+
|
410 |
+
except Exception as e:
|
411 |
+
print(f"Error processing funding goal for campaign {idx}: {str(e)}")
|
412 |
+
return 0.0
|
413 |
|
414 |
+
def process_previous_funding_goal(self, campaign: Dict, idx: int) -> float:
|
415 |
+
"""
|
416 |
+
Process previous campaign funding goal with logarithmic compression.
|
417 |
+
|
418 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
419 |
+
preserving relative differences between previous funding goals.
|
420 |
+
|
421 |
+
Args:
|
422 |
+
campaign (Dict): Campaign data
|
423 |
+
idx (int): Index of the campaign
|
424 |
+
|
425 |
+
Returns:
|
426 |
+
float: The transformed previous funding goal
|
427 |
+
"""
|
428 |
+
try:
|
429 |
+
previous_goal = float(campaign.get('previous_funding_goal', 0))
|
430 |
+
|
431 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
432 |
+
transformed_goal = np.log1p(previous_goal)/np.log(10)
|
433 |
+
|
434 |
+
return transformed_goal
|
435 |
+
|
436 |
+
except Exception as e:
|
437 |
+
print(f"Error processing previous funding goal for campaign {idx}: {str(e)}")
|
438 |
+
return 0.0
|
439 |
|
440 |
+
def process_previous_pledged(self, campaign: Dict, idx: int) -> float:
|
441 |
+
"""
|
442 |
+
Process previous campaign pledged amount with logarithmic compression.
|
443 |
+
|
444 |
+
Applies Log1p transformation with base 10 to compress extreme values while
|
445 |
+
preserving relative differences between previous pledged amounts.
|
446 |
+
|
447 |
+
Args:
|
448 |
+
campaign (Dict): Campaign data
|
449 |
+
idx (int): Index of the campaign
|
450 |
+
|
451 |
+
Returns:
|
452 |
+
float: The transformed previous pledged amount
|
453 |
+
"""
|
454 |
+
try:
|
455 |
+
pledged = float(campaign.get('previous_pledged', 0))
|
456 |
+
|
457 |
+
# Log1p transformation, good for general compression while preserving relative differences
|
458 |
+
transformed_pledge = np.log1p(pledged)/np.log(10)
|
459 |
+
|
460 |
+
return transformed_pledge
|
461 |
+
|
462 |
+
except Exception as e:
|
463 |
+
print(f"Error processing pledge amount for campaign {idx}: {str(e)}")
|
464 |
+
return 0.0
|
465 |
|
466 |
+
def calculate_previous_sucess_rate(self, campaign: Dict, idx: int) -> float:
|
467 |
+
"""
|
468 |
+
Calculate success rate of creator's previous campaigns.
|
469 |
+
|
470 |
+
Computes the ratio of successful previous projects to total previous projects.
|
471 |
+
|
472 |
+
Args:
|
473 |
+
campaign (Dict): Campaign data
|
474 |
+
idx (int): Index of the campaign
|
475 |
+
|
476 |
+
Returns:
|
477 |
+
float: The previous success rate (0-1)
|
478 |
+
"""
|
479 |
+
try:
|
480 |
+
previousProjects = float(campaign.get('previous_projects_count', 0))
|
481 |
+
previousSuccessfulProjects = float(campaign.get('previous_successful_projects', 0))
|
482 |
+
|
483 |
+
if previousProjects == 0.0:
|
484 |
+
return 0.0
|
485 |
+
else:
|
486 |
+
previous_success_rate = previousSuccessfulProjects / previousProjects
|
487 |
+
return previous_success_rate
|
488 |
+
|
489 |
+
except Exception as e:
|
490 |
+
print(f"Error calculating previous success rate for campaign {idx}: {str(e)}")
|
491 |
+
return 0.0
|
492 |
|
493 |
+
def process_campaign(self, campaign: Dict, idx: int) -> Dict:
|
494 |
+
"""
|
495 |
+
Process a single campaign to prepare all required features for prediction.
|
496 |
+
|
497 |
+
This is the main method that processes a raw campaign and prepares
|
498 |
+
all features (embeddings and numerical) for the prediction model.
|
499 |
+
|
500 |
+
Processing steps include:
|
501 |
+
- Text embedding generation using appropriate models
|
502 |
+
- Category and country embedding through GloVe
|
503 |
+
- Logarithmic transformation of monetary values
|
504 |
+
- Normalization of numerical features
|
505 |
+
|
506 |
+
Args:
|
507 |
+
campaign (Dict): Raw campaign data
|
508 |
+
idx (int): Index of the campaign
|
509 |
+
|
510 |
+
Returns:
|
511 |
+
Dict: Processed data with all features ready for prediction
|
512 |
+
"""
|
513 |
self._ensure_models_loaded()
|
514 |
|
515 |
# Generate embeddings for text fields
|
|
|
529 |
'country_embedding': self.process_country_embedding(campaign, idx).tolist()
|
530 |
}
|
531 |
|
532 |
+
# Process financial features with logarithmic transformation
|
533 |
+
result['funding_goal'] = self.process_funding_goal(campaign, idx)
|
534 |
+
result['previous_funding_goal'] = self.process_previous_funding_goal(campaign, idx)
|
535 |
+
result['previous_pledged'] = self.process_previous_pledged(campaign, idx)
|
536 |
+
|
537 |
+
# Calculate success rate based on previous projects
|
538 |
+
result['previous_success_rate'] = self.calculate_previous_sucess_rate(campaign, idx)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
539 |
|
540 |
+
# Extract simple integer features
|
541 |
for field in ['image_count', 'video_count', 'campaign_duration', 'previous_projects_count']:
|
542 |
result[field] = int(campaign.get(field, 0))
|
543 |
|