import gradio as gr import requests import json import os from datasets import load_dataset from pymongo.mongo_client import MongoClient from pymongo.server_api import ServerApi db_password = os.environ["db_password"] uri = f"mongodb+srv://tuna:{db_password}@tuna.ixw4ff2.mongodb.net/?appName=tuna" # Create a new client and connect to the server client = MongoClient(uri, server_api=ServerApi('1')) database = client['valid_image_caption'] collection = database["log_valid"] ds = load_dataset("anhdt-dsai-02/test_image_dataset_1_2_3_4", token = os.environ['token_huggingface'] ) def get_similar_captions(caption): url = "https://anhdt-dsai-02-caption-retrieval.hf.space/retrieval" params = {"caption": caption} try: response = requests.post(url, params=params, headers={"accept": "application/json"}) response.raise_for_status() # Raises an HTTPError for bad responses (4xx and 5xx) data = response.json() # Assuming response is JSON except requests.exceptions.RequestException as e: print(f"Request failed: {e}") except ValueError: print("Failed to parse JSON response") return data index = 0 def create_question(): global index print(index) caption = ds['train'][index]["caption"] # delete [0] caption_lst = get_similar_captions(caption) #id_lst = [pair['id'] for pair in caption_lst] id_lst = [int(pair['id']/10) for pair in caption_lst] images = [ds["train"][id]['image'] for id in id_lst] index += 1 return caption, images, id_lst def on_select(evt: gr.SelectData): idx = evt.index return idx # Function to handle user selection def process_answer(user_id, caption, selected_image, ids): collection.insert_one({ "used_id" : user_id, "caption": caption, "ids": ids, "choice": selected_image}) send_score(user_id, 0.1) return create_question() def send_score(user_id, score = 0.1): max_retries = 10 while max_retries > 0: url = os.environ['api_url'] + "grade" payload = { "token": user_id, "comment": "Good job!", "grade": score, "submitted_at": "2021-01-01 00:00:00", "graded_at": "2021-01-01 00:00:00" } headers = { "Content-Type": "application/json", "Accept": "application/json", "X-Public-Api-Key": os.environ['ADMIN'] } response = requests.post(url, json=payload, headers=headers) if response.status_code == 200: return True print(response) max_retries -= 1 return False def authenticate(user_id): url = os.environ['api_url'] + "authenticate" headers = { "Content-Type": "application/json", "Accept": "application/json", "X-Public-Api-Key": os.environ['ADMIN'] } payload = { "token": user_id } response = requests.post(url, json=payload, headers=headers) return response.status_code == 200 def login(username): #state[0] = username #package[0] = get_next_package(user_id=username) """ #temp gr.Info("Login successfully. Welcome!") return f"Welcome, {username}!", gr.update(visible=False), gr.update(visible=True) #temp """ # Authenticate user if authenticate(username): #user_sessions[username] = True gr.Info("Login successfully. Welcome!") return f"Welcome, {username}!", gr.update(visible=False), gr.update(visible=True), *create_question() else: raise gr.Error("Token ID is invalid! Try again!") return "Invalid Token ID", gr.update(visible=True), gr.update(visible=False) # Gradio UI with gr.Blocks() as demo: with gr.Column(visible=True) as login_section: username_input = gr.Textbox(placeholder="Enter your token", label="Token ID", type="password") login_button = gr.Button("Login") login_output = gr.Textbox(label="Login Status", interactive=False) # Upload section (initially hidden) with gr.Column(visible=False) as upload_section: caption = gr.State() images = gr.State() id_lst = gr.State() # Store the selected image path selected_image = gr.State() #caption.value, images.value, id_lst.value = create_question() gr.Markdown("**Đâu là hình ảnh phù hợp với caption sau:**") markdown = gr.Markdown(caption.value) # Display images in a Gallery gallery = gr.Gallery(value=images.value, label="Ấn vào hình ảnh để chọn sau đó Submit", columns = 4) # Use the Gallery's select event to update the selected image gallery.select(fn=on_select, outputs=selected_image) # Submit button submit_button = gr.Button("Submit") # Output message output_message = gr.Textbox(label="Result") # Action in Login Section username_input.submit( login, inputs=[username_input], outputs=[login_output, login_section, upload_section, markdown, gallery, id_lst] #, translation_section, en_input, vi_input] ) login_button.click( login, inputs=[username_input], outputs=[login_output, login_section, upload_section, markdown, gallery, id_lst] #, translation_section, en_input, vi_input] ) # Link the submit button to the processing function submit_button.click(fn=process_answer, inputs=[username_input, caption, selected_image, id_lst], outputs=[markdown, gallery, id_lst]) # Launch the app demo.launch(debug = True)