File size: 10,225 Bytes
0b756df
 
 
 
226cc7a
0b756df
 
 
 
226cc7a
0b756df
 
 
226cc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b756df
 
 
 
 
 
 
 
 
 
 
 
 
 
226cc7a
 
0b756df
 
226cc7a
0b756df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71c9afb
226cc7a
71c9afb
 
 
 
 
 
 
 
 
 
226cc7a
71c9afb
 
 
 
 
 
 
 
 
 
 
226cc7a
 
71c9afb
226cc7a
71c9afb
 
 
 
226cc7a
71c9afb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
226cc7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
import os
import cv2
import time
import glob
import torch
import shutil
import platform
import datetime
import subprocess
import numpy as np
from threading import Thread
from moviepy.editor import VideoFileClip, ImageSequenceClip
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip
from face_parsing import init_parser, swap_regions, mask_regions, mask_regions_to_list, SoftErosion


logo_image = cv2.imread("./assets/images/logo.png", cv2.IMREAD_UNCHANGED)


quality_types = ["poor", "low", "medium", "high", "best"]


bitrate_quality_by_resolution = {
    240: {"poor": "300k", "low": "500k", "medium": "800k", "high": "1000k", "best": "1200k"},
    360: {"poor": "500k","low": "800k","medium": "1200k","high": "1500k","best": "2000k"},
    480: {"poor": "800k","low": "1200k","medium": "2000k","high": "2500k","best": "3000k"},
    720: {"poor": "1500k","low": "2500k","medium": "4000k","high": "5000k","best": "6000k"},
    1080: {"poor": "2500k","low": "4000k","medium": "6000k","high": "7000k","best": "8000k"},
    1440: {"poor": "4000k","low": "6000k","medium": "8000k","high": "10000k","best": "12000k"},
    2160: {"poor": "8000k","low": "10000k","medium": "12000k","high": "15000k","best": "20000k"}
}


crf_quality_by_resolution = {
    240: {"poor": 45, "low": 35, "medium": 28, "high": 23, "best": 20},
    360: {"poor": 35, "low": 28, "medium": 23, "high": 20, "best": 18},
    480: {"poor": 28, "low": 23, "medium": 20, "high": 18, "best": 16},
    720: {"poor": 23, "low": 20, "medium": 18, "high": 16, "best": 14},
    1080: {"poor": 20, "low": 18, "medium": 16, "high": 14, "best": 12},
    1440: {"poor": 18, "low": 16, "medium": 14, "high": 12, "best": 10},
    2160: {"poor": 16, "low": 14, "medium": 12, "high": 10, "best": 8}
}


def get_bitrate_for_resolution(resolution, quality):
    available_resolutions = list(bitrate_quality_by_resolution.keys())
    closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
    return bitrate_quality_by_resolution[closest_resolution][quality]


def get_crf_for_resolution(resolution, quality):
    available_resolutions = list(crf_quality_by_resolution.keys())
    closest_resolution = min(available_resolutions, key=lambda x: abs(x - resolution))
    return crf_quality_by_resolution[closest_resolution][quality]


def get_video_bitrate(video_file):
    ffprobe_cmd = ['ffprobe', '-v', 'error', '-select_streams', 'v:0', '-show_entries',
        'stream=bit_rate', '-of', 'default=noprint_wrappers=1:nokey=1', video_file]
    result = subprocess.run(ffprobe_cmd, stdout=subprocess.PIPE)
    kbps = max(int(result.stdout) // 1000, 10)
    return str(kbps) + 'k'


def trim_video(video_path, output_path, start_frame, stop_frame):
    video_name, _ = os.path.splitext(os.path.basename(video_path))
    trimmed_video_filename = video_name + "_trimmed" + ".mp4"
    temp_path = os.path.join(output_path, "trim")
    os.makedirs(temp_path, exist_ok=True)
    trimmed_video_file_path = os.path.join(temp_path, trimmed_video_filename)

    video = VideoFileClip(video_path)
    fps = video.fps
    start_time = start_frame / fps
    duration = (stop_frame - start_frame) / fps

    bitrate = get_bitrate_for_resolution(min(*video.size), "high")

    trimmed_video = video.subclip(start_time, start_time + duration)
    trimmed_video.write_videofile(
        trimmed_video_file_path, codec="libx264", audio_codec="aac", bitrate=bitrate,
    )
    trimmed_video.close()
    video.close()

    return trimmed_video_file_path


def open_directory(path=None):
    if path is None:
        return
    try:
        os.startfile(path)
    except:
        subprocess.Popen(["xdg-open", path])


class StreamerThread(object):
    def __init__(self, src=0):
        self.capture = cv2.VideoCapture(src)
        self.capture.set(cv2.CAP_PROP_BUFFERSIZE, 2)
        self.FPS = 1 / 30
        self.FPS_MS = int(self.FPS * 1000)
        self.thread = None
        self.stopped = False
        self.frame = None

    def start(self):
        self.thread = Thread(target=self.update, args=())
        self.thread.daemon = True
        self.thread.start()

    def stop(self):
        self.stopped = True
        self.thread.join()
        print("stopped")

    def update(self):
        while not self.stopped:
            if self.capture.isOpened():
                (self.status, self.frame) = self.capture.read()
            time.sleep(self.FPS)


class ProcessBar:
    def __init__(self, bar_length, total, before="⬛", after="🟨"):
        self.bar_length = bar_length
        self.total = total
        self.before = before
        self.after = after
        self.bar = [self.before] * bar_length
        self.start_time = time.time()

    def get(self, index):
        total = self.total
        elapsed_time = time.time() - self.start_time
        average_time_per_iteration = elapsed_time / (index + 1)
        remaining_iterations = total - (index + 1)
        estimated_remaining_time = remaining_iterations * average_time_per_iteration

        self.bar[int(index / total * self.bar_length)] = self.after
        info_text = f"({index+1}/{total}) {''.join(self.bar)} "
        info_text += f"(ETR: {int(estimated_remaining_time // 60)} min {int(estimated_remaining_time % 60)} sec)"
        return info_text


def add_logo_to_image(img, logo=logo_image):
    logo_size = int(img.shape[1] * 0.1)
    logo = cv2.resize(logo, (logo_size, logo_size))
    if logo.shape[2] == 4:
        alpha = logo[:, :, 3]
    else:
        alpha = np.ones_like(logo[:, :, 0]) * 255
    padding = int(logo_size * 0.1)
    roi = img.shape[0] - logo_size - padding, img.shape[1] - logo_size - padding
    for c in range(0, 3):
        img[roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c] = (
            alpha / 255.0
        ) * logo[:, :, c] + (1 - alpha / 255.0) * img[
            roi[0] : roi[0] + logo_size, roi[1] : roi[1] + logo_size, c
        ]
    return img


def split_list_by_lengths(data, length_list):
    split_data = []
    start_idx = 0
    for length in length_list:
        end_idx = start_idx + length
        sublist = data[start_idx:end_idx]
        split_data.append(sublist)
        start_idx = end_idx
    return split_data


def merge_img_sequence_from_ref(ref_video_path, image_sequence, output_file_name):
    video_clip = VideoFileClip(ref_video_path)
    fps = video_clip.fps
    duration = video_clip.duration
    total_frames = video_clip.reader.nframes
    audio_clip = video_clip.audio if video_clip.audio is not None else None
    edited_video_clip = ImageSequenceClip(image_sequence, fps=fps)

    if audio_clip is not None:
        edited_video_clip = edited_video_clip.set_audio(audio_clip)

    bitrate = get_bitrate_for_resolution(min(*edited_video_clip.size), "high")

    edited_video_clip.set_duration(duration).write_videofile(
        output_file_name, codec="libx264", bitrate=bitrate,
    )
    edited_video_clip.close()
    video_clip.close()


def scale_bbox_from_center(bbox, scale_width, scale_height, image_width, image_height):
    # Extract the coordinates of the bbox
    x1, y1, x2, y2 = bbox

    # Calculate the center point of the bbox
    center_x = (x1 + x2) / 2
    center_y = (y1 + y2) / 2

    # Calculate the new width and height of the bbox based on the scaling factors
    width = x2 - x1
    height = y2 - y1
    new_width = width * scale_width
    new_height = height * scale_height

    # Calculate the new coordinates of the bbox, considering the image boundaries
    new_x1 = center_x - new_width / 2
    new_y1 = center_y - new_height / 2
    new_x2 = center_x + new_width / 2
    new_y2 = center_y + new_height / 2

    # Adjust the coordinates to ensure the bbox remains within the image boundaries
    new_x1 = max(0, new_x1)
    new_y1 = max(0, new_y1)
    new_x2 = min(image_width - 1, new_x2)
    new_y2 = min(image_height - 1, new_y2)

    # Return the scaled bbox coordinates
    scaled_bbox = [new_x1, new_y1, new_x2, new_y2]
    return scaled_bbox


def laplacian_blending(A, B, m, num_levels=4):
    assert A.shape == B.shape
    assert B.shape == m.shape
    height = m.shape[0]
    width = m.shape[1]
    size_list = np.array([4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096])
    size = size_list[np.where(size_list > max(height, width))][0]
    GA = np.zeros((size, size, 3), dtype=np.float32)
    GA[:height, :width, :] = A
    GB = np.zeros((size, size, 3), dtype=np.float32)
    GB[:height, :width, :] = B
    GM = np.zeros((size, size, 3), dtype=np.float32)
    GM[:height, :width, :] = m
    gpA = [GA]
    gpB = [GB]
    gpM = [GM]
    for i in range(num_levels):
        GA = cv2.pyrDown(GA)
        GB = cv2.pyrDown(GB)
        GM = cv2.pyrDown(GM)
        gpA.append(np.float32(GA))
        gpB.append(np.float32(GB))
        gpM.append(np.float32(GM))
    lpA  = [gpA[num_levels-1]]
    lpB  = [gpB[num_levels-1]]
    gpMr = [gpM[num_levels-1]]
    for i in range(num_levels-1,0,-1):
        LA = np.subtract(gpA[i-1], cv2.pyrUp(gpA[i]))
        LB = np.subtract(gpB[i-1], cv2.pyrUp(gpB[i]))
        lpA.append(LA)
        lpB.append(LB)
        gpMr.append(gpM[i-1])
    LS = []
    for la,lb,gm in zip(lpA,lpB,gpMr):
        ls = la * gm + lb * (1.0 - gm)
        LS.append(ls)
    ls_ = LS[0]
    for i in range(1,num_levels):
        ls_ = cv2.pyrUp(ls_)
        ls_ = cv2.add(ls_, LS[i])
    ls_ = np.clip(ls_[:height, :width, :], 0, 255)
    return ls_


def make_white_image(shape, crop=None, white_value=255):
    img_white = np.full((shape[0], shape[1]), white_value, dtype=np.float32)
    if crop is not None:
        top = int(crop[0])
        bottom = int(crop[1])
        if top + bottom < shape[1]:
            if top > 0: img_white[:top, :] = 0
            if bottom > 0: img_white[-bottom:, :] = 0

        left = int(crop[2])
        right = int(crop[3])
        if left + right < shape[0]:
            if left > 0: img_white[:, :left] = 0
            if right > 0: img_white[:, -right:] = 0

    return img_white


def remove_hair(img, model=None):
    if model is None:
        path = "./assets/pretrained_models/79999_iter.pth"
        model = init_parser(path, mode="cuda" if torch.cuda.is_available() else "cpu")