Spaces:
Running
Running
import numpy as np | |
import torch | |
from PIL import Image | |
import os | |
import io | |
def pad_reflect(image, pad_size): | |
imsize = image.shape | |
height, width = imsize[:2] | |
new_img = np.zeros([height+pad_size*2, width+pad_size*2, imsize[2]]).astype(np.uint8) | |
new_img[pad_size:-pad_size, pad_size:-pad_size, :] = image | |
new_img[0:pad_size, pad_size:-pad_size, :] = np.flip(image[0:pad_size, :, :], axis=0) #top | |
new_img[-pad_size:, pad_size:-pad_size, :] = np.flip(image[-pad_size:, :, :], axis=0) #bottom | |
new_img[:, 0:pad_size, :] = np.flip(new_img[:, pad_size:pad_size*2, :], axis=1) #left | |
new_img[:, -pad_size:, :] = np.flip(new_img[:, -pad_size*2:-pad_size, :], axis=1) #right | |
return new_img | |
def unpad_image(image, pad_size): | |
return image[pad_size:-pad_size, pad_size:-pad_size, :] | |
def process_array(image_array, expand=True): | |
""" Process a 3-dimensional array into a scaled, 4 dimensional batch of size 1. """ | |
image_batch = image_array / 255.0 | |
if expand: | |
image_batch = np.expand_dims(image_batch, axis=0) | |
return image_batch | |
def process_output(output_tensor): | |
""" Transforms the 4-dimensional output tensor into a suitable image format. """ | |
sr_img = output_tensor.clip(0, 1) * 255 | |
sr_img = np.uint8(sr_img) | |
return sr_img | |
def pad_patch(image_patch, padding_size, channel_last=True): | |
""" Pads image_patch with with padding_size edge values. """ | |
if channel_last: | |
return np.pad( | |
image_patch, | |
((padding_size, padding_size), (padding_size, padding_size), (0, 0)), | |
'edge', | |
) | |
else: | |
return np.pad( | |
image_patch, | |
((0, 0), (padding_size, padding_size), (padding_size, padding_size)), | |
'edge', | |
) | |
def unpad_patches(image_patches, padding_size): | |
return image_patches[:, padding_size:-padding_size, padding_size:-padding_size, :] | |
def split_image_into_overlapping_patches(image_array, patch_size, padding_size=2): | |
""" Splits the image into partially overlapping patches. | |
The patches overlap by padding_size pixels. | |
Pads the image twice: | |
- first to have a size multiple of the patch size, | |
- then to have equal padding at the borders. | |
Args: | |
image_array: numpy array of the input image. | |
patch_size: size of the patches from the original image (without padding). | |
padding_size: size of the overlapping area. | |
""" | |
xmax, ymax, _ = image_array.shape | |
x_remainder = xmax % patch_size | |
y_remainder = ymax % patch_size | |
# modulo here is to avoid extending of patch_size instead of 0 | |
x_extend = (patch_size - x_remainder) % patch_size | |
y_extend = (patch_size - y_remainder) % patch_size | |
# make sure the image is divisible into regular patches | |
extended_image = np.pad(image_array, ((0, x_extend), (0, y_extend), (0, 0)), 'edge') | |
# add padding around the image to simplify computations | |
padded_image = pad_patch(extended_image, padding_size, channel_last=True) | |
xmax, ymax, _ = padded_image.shape | |
patches = [] | |
x_lefts = range(padding_size, xmax - padding_size, patch_size) | |
y_tops = range(padding_size, ymax - padding_size, patch_size) | |
for x in x_lefts: | |
for y in y_tops: | |
x_left = x - padding_size | |
y_top = y - padding_size | |
x_right = x + patch_size + padding_size | |
y_bottom = y + patch_size + padding_size | |
patch = padded_image[x_left:x_right, y_top:y_bottom, :] | |
patches.append(patch) | |
return np.array(patches), padded_image.shape | |
def stich_together(patches, padded_image_shape, target_shape, padding_size=4): | |
""" Reconstruct the image from overlapping patches. | |
After scaling, shapes and padding should be scaled too. | |
Args: | |
patches: patches obtained with split_image_into_overlapping_patches | |
padded_image_shape: shape of the padded image contructed in split_image_into_overlapping_patches | |
target_shape: shape of the final image | |
padding_size: size of the overlapping area. | |
""" | |
xmax, ymax, _ = padded_image_shape | |
patches = unpad_patches(patches, padding_size) | |
patch_size = patches.shape[1] | |
n_patches_per_row = ymax // patch_size | |
complete_image = np.zeros((xmax, ymax, 3)) | |
row = -1 | |
col = 0 | |
for i in range(len(patches)): | |
if i % n_patches_per_row == 0: | |
row += 1 | |
col = 0 | |
complete_image[ | |
row * patch_size: (row + 1) * patch_size, col * patch_size: (col + 1) * patch_size,: | |
] = patches[i] | |
col += 1 | |
return complete_image[0: target_shape[0], 0: target_shape[1], :] |