Spaces:
Running
Running
import time | |
import torch | |
import onnx | |
import cv2 | |
import onnxruntime | |
import numpy as np | |
from tqdm import tqdm | |
import torch.nn as nn | |
from onnx import numpy_helper | |
from skimage import transform as trans | |
import torchvision.transforms.functional as F | |
import torch.nn.functional as F | |
from utils import mask_crop, laplacian_blending | |
arcface_dst = np.array( | |
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], | |
[41.5493, 92.3655], [70.7299, 92.2041]], | |
dtype=np.float32) | |
def estimate_norm(lmk, image_size=112, mode='arcface'): | |
assert lmk.shape == (5, 2) | |
assert image_size % 112 == 0 or image_size % 128 == 0 | |
if image_size % 112 == 0: | |
ratio = float(image_size) / 112.0 | |
diff_x = 0 | |
else: | |
ratio = float(image_size) / 128.0 | |
diff_x = 8.0 * ratio | |
dst = arcface_dst * ratio | |
dst[:, 0] += diff_x | |
tform = trans.SimilarityTransform() | |
tform.estimate(lmk, dst) | |
M = tform.params[0:2, :] | |
return M | |
def norm_crop2(img, landmark, image_size=112, mode='arcface'): | |
M = estimate_norm(landmark, image_size, mode) | |
warped = cv2.warpAffine(img, M, (image_size, image_size), borderValue=0.0) | |
return warped, M | |
class Inswapper(): | |
def __init__(self, model_file=None, batch_size=32, providers=['CPUExecutionProvider']): | |
self.model_file = model_file | |
self.batch_size = batch_size | |
model = onnx.load(self.model_file) | |
graph = model.graph | |
self.emap = numpy_helper.to_array(graph.initializer[-1]) | |
self.session_options = onnxruntime.SessionOptions() | |
self.session = onnxruntime.InferenceSession(self.model_file, sess_options=self.session_options, providers=providers) | |
def forward(self, imgs, latents): | |
preds = [] | |
for img, latent in zip(imgs, latents): | |
img = img / 255 | |
pred = self.session.run(['output'], {'target': img, 'source': latent})[0] | |
preds.append(pred) | |
def get(self, imgs, target_faces, source_faces): | |
imgs = list(imgs) | |
preds = [None] * len(imgs) | |
matrs = [None] * len(imgs) | |
for idx, (img, target_face, source_face) in enumerate(zip(imgs, target_faces, source_faces)): | |
matrix, blob, latent = self.prepare_data(img, target_face, source_face) | |
pred = self.session.run(['output'], {'target': blob, 'source': latent})[0] | |
pred = pred.transpose((0, 2, 3, 1))[0] | |
pred = np.clip(255 * pred, 0, 255).astype(np.uint8)[:, :, ::-1] | |
preds[idx] = pred | |
matrs[idx] = matrix | |
return (preds, matrs) | |
def prepare_data(self, img, target_face, source_face): | |
if isinstance(img, str): | |
img = cv2.imread(img) | |
aligned_img, matrix = norm_crop2(img, target_face.kps, 128) | |
blob = cv2.dnn.blobFromImage(aligned_img, 1.0 / 255, (128, 128), (0., 0., 0.), swapRB=True) | |
latent = source_face.normed_embedding.reshape((1, -1)) | |
latent = np.dot(latent, self.emap) | |
latent /= np.linalg.norm(latent) | |
return (matrix, blob, latent) | |
def batch_forward(self, img_list, target_f_list, source_f_list): | |
num_samples = len(img_list) | |
num_batches = (num_samples + self.batch_size - 1) // self.batch_size | |
for i in tqdm(range(num_batches), desc="Generating face"): | |
start_idx = i * self.batch_size | |
end_idx = min((i + 1) * self.batch_size, num_samples) | |
batch_img = img_list[start_idx:end_idx] | |
batch_target_f = target_f_list[start_idx:end_idx] | |
batch_source_f = source_f_list[start_idx:end_idx] | |
batch_pred, batch_matr = self.get(batch_img, batch_target_f, batch_source_f) | |
yield batch_pred, batch_matr | |
def paste_to_whole(foreground, background, matrix, mask=None, crop_mask=(0,0,0,0), blur_amount=0.1, erode_amount = 0.15, blend_method='linear'): | |
inv_matrix = cv2.invertAffineTransform(matrix) | |
fg_shape = foreground.shape[:2] | |
bg_shape = (background.shape[1], background.shape[0]) | |
foreground = cv2.warpAffine(foreground, inv_matrix, bg_shape, borderValue=0.0) | |
if mask is None: | |
mask = np.full(fg_shape, 1., dtype=np.float32) | |
mask = mask_crop(mask, crop_mask) | |
mask = cv2.warpAffine(mask, inv_matrix, bg_shape, borderValue=0.0) | |
else: | |
assert fg_shape == mask.shape[:2], "foreground & mask shape mismatch!" | |
mask = mask_crop(mask, crop_mask).astype('float32') | |
mask = cv2.warpAffine(mask, inv_matrix, (background.shape[1], background.shape[0]), borderValue=0.0) | |
_mask = mask.copy() | |
_mask[_mask > 0.05] = 1. | |
non_zero_points = cv2.findNonZero(_mask) | |
_, _, w, h = cv2.boundingRect(non_zero_points) | |
mask_size = int(np.sqrt(w * h)) | |
if erode_amount > 0: | |
kernel_size = max(int(mask_size * erode_amount), 1) | |
structuring_element = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) | |
mask = cv2.erode(mask, structuring_element) | |
if blur_amount > 0: | |
kernel_size = max(int(mask_size * blur_amount), 3) | |
if kernel_size % 2 == 0: | |
kernel_size += 1 | |
mask = cv2.GaussianBlur(mask, (kernel_size, kernel_size), 0) | |
mask = np.tile(np.expand_dims(mask, axis=-1), (1, 1, 3)) | |
if blend_method == 'laplacian': | |
composite_image = laplacian_blending(foreground, background, mask.clip(0,1), num_levels=4) | |
else: | |
composite_image = mask * foreground + (1 - mask) * background | |
return composite_image.astype("uint8").clip(0, 255) | |