Spaces:
Running
Running
import cv2 | |
import torch | |
import onnx | |
import onnxruntime | |
import numpy as np | |
import time | |
# codeformer converted to onnx | |
# using https://github.com/redthing1/CodeFormer | |
class CodeFormerEnhancer: | |
def __init__(self, model_path="codeformer.onnx", device='cpu'): | |
model = onnx.load(model_path) | |
session_options = onnxruntime.SessionOptions() | |
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL | |
providers = ["CPUExecutionProvider"] | |
if device == 'cuda': | |
providers = [("CUDAExecutionProvider", {"cudnn_conv_algo_search": "DEFAULT"}),"CPUExecutionProvider"] | |
self.session = onnxruntime.InferenceSession(model_path, sess_options=session_options, providers=providers) | |
def enhance(self, img, w=0.9): | |
img = cv2.resize(img, (512, 512), interpolation=cv2.INTER_LINEAR) | |
img = img.astype(np.float32)[:,:,::-1] / 255.0 | |
img = img.transpose((2, 0, 1)) | |
nrm_mean = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) | |
nrm_std = np.array([0.5, 0.5, 0.5]).reshape((-1, 1, 1)) | |
img = (img - nrm_mean) / nrm_std | |
img = np.expand_dims(img, axis=0) | |
out = self.session.run(None, {'x':img.astype(np.float32), 'w':np.array([w], dtype=np.double)})[0] | |
out = (out[0].transpose(1,2,0).clip(-1,1) + 1) * 0.5 | |
out = (out * 255)[:,:,::-1] | |
return out.astype('uint8') | |