Spaces:
Running
Running
import cv2 | |
import torch | |
import torchvision | |
import numpy as np | |
import torch.nn as nn | |
from PIL import Image | |
from tqdm import tqdm | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
from . model import BiSeNet | |
transform = transforms.Compose([ | |
transforms.Resize((512, 512)), | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
]) | |
def init_parsing_model(model_path, device="cpu"): | |
net = BiSeNet(19) | |
net.to(device) | |
net.load_state_dict(torch.load(model_path)) | |
net.eval() | |
return net | |
def transform_images(imgs): | |
tensor_images = torch.stack([transform(Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))) for img in imgs], dim=0) | |
return tensor_images | |
def get_parsed_mask(net, imgs, classes=[1, 2, 3, 4, 5, 10, 11, 12, 13], device="cpu", batch_size=8): | |
masks = [] | |
for i in tqdm(range(0, len(imgs), batch_size), total=len(imgs) // batch_size, desc="Face-parsing"): | |
batch_imgs = imgs[i:i + batch_size] | |
tensor_images = transform_images(batch_imgs).to(device) | |
with torch.no_grad(): | |
out = net(tensor_images)[0] | |
parsing = out.argmax(dim=1).cpu().numpy() | |
batch_masks = np.isin(parsing, classes) | |
masks.append(batch_masks) | |
masks = np.concatenate(masks, axis=0) | |
# masks = np.repeat(np.expand_dims(masks, axis=1), 3, axis=1) | |
for i, mask in enumerate(masks): | |
cv2.imwrite(f"mask/{i}.jpg", (mask * 255).astype("uint8")) | |
return masks | |