DeepfakeFaceswap / face_enhancer.py
Harisreedhar
add codeformer
d8ef00b
raw
history blame
2.72 kB
import os
import cv2
import torch
import gfpgan
from PIL import Image
from upscaler.RealESRGAN import RealESRGAN
from upscaler.codeformer import CodeFormerEnhancer
def gfpgan_runner(img, model):
_, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True)
return imgs[0]
def realesrgan_runner(img, model):
img = model.predict(img)
return img
def codeformer_runner(img, model):
img = model.enhance(img)
return img
supported_enhancers = {
"CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner),
"GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner),
"REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner),
"REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner),
"REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner)
}
cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"]
def get_available_enhancer_names():
available = []
for name, data in supported_enhancers.items():
path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0])
if os.path.exists(path):
available.append(name)
return available
def load_face_enhancer_model(name='GFPGAN', device="cpu"):
assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable."
if name in supported_enhancers.keys():
model_path, model_runner = supported_enhancers.get(name)
model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path)
if name == 'CodeFormer':
model = CodeFormerEnhancer(model_path=model_path, device=device)
elif name == 'GFPGAN':
model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device)
elif name == 'REAL-ESRGAN 2x':
model = RealESRGAN(device, scale=2)
model.load_weights(model_path, download=False)
elif name == 'REAL-ESRGAN 4x':
model = RealESRGAN(device, scale=4)
model.load_weights(model_path, download=False)
elif name == 'REAL-ESRGAN 8x':
model = RealESRGAN(device, scale=8)
model.load_weights(model_path, download=False)
elif name == 'LANCZOS4':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4)
elif name == 'CUBIC':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC)
elif name == 'NEAREST':
model = None
model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST)
else:
model = None
return (model, model_runner)