Spaces:
Sleeping
Sleeping
Commit
·
38c5a71
1
Parent(s):
d73ecb2
Initial commit with app.py
Browse files- app.py +75 -0
- requirements.txt +22 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
import gradio as gr
|
6 |
+
import json
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
import subprocess
|
9 |
+
|
10 |
+
repo_url = "https://github.com/CASIA-IVA-Lab/FastSAM.git"
|
11 |
+
target_directory = "./FastSAM"
|
12 |
+
subprocess.run(['git', 'clone', repo_url, target_directory])
|
13 |
+
os.chdir('./FastSAM')
|
14 |
+
|
15 |
+
from fastsam import FastSAM, FastSAMPrompt
|
16 |
+
import ast
|
17 |
+
import torch
|
18 |
+
from PIL import Image
|
19 |
+
from utils.tools import convert_box_xywh_to_xyxy
|
20 |
+
|
21 |
+
def gradio_fn(pil_input_img):
|
22 |
+
# load model
|
23 |
+
model = FastSAM('./weights/FastSAM.pt')
|
24 |
+
args_point_prompt = ast.literal_eval("[[0,0]]")
|
25 |
+
args_box_prompt = convert_box_xywh_to_xyxy(ast.literal_eval("[[0,0,0,0]]"))
|
26 |
+
args_point_label = ast.literal_eval("[0]")
|
27 |
+
args_text_prompt = None
|
28 |
+
input = pil_input_img
|
29 |
+
input = input.convert("RGB")
|
30 |
+
everything_results = model(
|
31 |
+
input,
|
32 |
+
device="cpu",
|
33 |
+
retina_masks=True,
|
34 |
+
imgsz=1024,
|
35 |
+
conf=0.4,
|
36 |
+
iou=0.9
|
37 |
+
)
|
38 |
+
bboxes = None
|
39 |
+
points = None
|
40 |
+
point_label = None
|
41 |
+
prompt_process = FastSAMPrompt(input, everything_results, device="cpu")
|
42 |
+
if args_box_prompt[0][2] != 0 and args_box_prompt[0][3] != 0:
|
43 |
+
ann = prompt_process.box_prompt(bboxes=args_box_prompt)
|
44 |
+
bboxes = args_box_prompt
|
45 |
+
elif args_text_prompt != None:
|
46 |
+
ann = prompt_process.text_prompt(text=args_text_prompt)
|
47 |
+
elif args_point_prompt[0] != [0, 0]:
|
48 |
+
ann = prompt_process.point_prompt(
|
49 |
+
points=args_point_prompt, pointlabel=args_point_label
|
50 |
+
)
|
51 |
+
points = args_point_prompt
|
52 |
+
point_label = args_point_label
|
53 |
+
else:
|
54 |
+
ann = prompt_process.everything_prompt()
|
55 |
+
prompt_process.plot(
|
56 |
+
annotations=ann,
|
57 |
+
output_path="./output.jpg",
|
58 |
+
bboxes = bboxes,
|
59 |
+
points = points,
|
60 |
+
point_label = point_label,
|
61 |
+
withContours=False,
|
62 |
+
better_quality=False,
|
63 |
+
)
|
64 |
+
pil_image_output = Image.open('./output.jpg')
|
65 |
+
np_img_array = np.array(pil_image_output)
|
66 |
+
return np_img_array
|
67 |
+
|
68 |
+
demo = gr.Interface(fn=gradio_fn,
|
69 |
+
inputs=gr.Image(type="pil"),
|
70 |
+
outputs="image",
|
71 |
+
title="FAST-SAM Segment Everything",
|
72 |
+
description="- **FastSAM** model that returns segmented RGB image of given input image. \
|
73 |
+
- **Credits** : \
|
74 |
+
- https://huggingface.co/An-619 \
|
75 |
+
- https://github.com/CASIA-IVA-Lab/FastSAM")
|
requirements.txt
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Base-----------------------------------
|
2 |
+
matplotlib>=3.2.2
|
3 |
+
opencv-python>=4.6.0
|
4 |
+
Pillow>=7.1.2
|
5 |
+
PyYAML>=5.3.1
|
6 |
+
requests>=2.23.0
|
7 |
+
scipy>=1.4.1
|
8 |
+
torch>=1.7.0
|
9 |
+
torchvision>=0.8.1
|
10 |
+
tqdm>=4.64.0
|
11 |
+
|
12 |
+
pandas>=1.1.4
|
13 |
+
seaborn>=0.11.0
|
14 |
+
|
15 |
+
gradio==3.35.2
|
16 |
+
|
17 |
+
# Ultralytics-----------------------------------
|
18 |
+
ultralytics == 8.0.120
|
19 |
+
|
20 |
+
# clip----
|
21 |
+
git+https://github.com/openai/CLIP.git
|
22 |
+
|