File size: 2,054 Bytes
36811a8
 
 
 
 
 
 
05c2acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import gradio as gr

def greet(name):
    return "Hello " + name + "!!"

demo = gr.Interface(fn=greet, inputs="text", outputs="text")
demo.launch()
import os
from moviepy.editor import VideoFileClip, concatenate_videoclips
from transformers import VideoProcessor, VideoModel  # Replace with actual imports if needed

# Function to load the Hugging Face model and processor
def load_model(model_name):
    try:
        model = VideoModel.from_pretrained(model_name)
        processor = VideoProcessor.from_pretrained(model_name)
        return model, processor
    except Exception as e:
        print(f"Error loading model: {e}")
        return None, None

# Function to generate the crossover video
def generate_crossover_video(video1_path, video2_path, output_path):
    if not os.path.isfile(video1_path):
        print(f"Error: {video1_path} does not exist.")
        return
    print(f"Processing Video 1: {video1_path}")
    
    if not os.path.isfile(video2_path):
        print(f"Error: {video2_path} does not exist.")
        return
    print(f"Processing Video 2: {video2_path}")

    # Load video clips
    clip1 = VideoFileClip(video1_path)
    clip2 = VideoFileClip(video2_path)
    
    # For now, just concatenating the clips directly
    final_clip = concatenate_videoclips([clip1, clip2])
    
    # Write the output video file
    final_clip.write_videofile(output_path, codec='libx264')
    print(f"Crossover video saved to {output_path}")

def main():
    video1_path = input("Enter the path to the first video: ")
    video2_path = input("Enter the path to the second video: ")
    output_path = input("Enter the output file path (e.g., crossover_output.mp4): ")
    
    model_name = "your_model_name"  # Replace with the actual model name you want to use
    model, processor = load_model(model_name)

    if model is None or processor is None:
        print("Model loading failed. Exiting the application.")
        return

    generate_crossover_video(video1_path, video2_path, output_path)

if __name__ == "__main__":
    main()