Update README.md
Browse files
README.md
CHANGED
@@ -34,4 +34,97 @@ def generate_crossover_video(video1_path, video2_path, output_path):
|
|
34 |
# Example usage
|
35 |
generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4")
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
34 |
# Example usage
|
35 |
generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4")
|
36 |
|
37 |
+
import torch
|
38 |
+
from transformers import VideoGPT, VideoProcessor
|
39 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
40 |
+
|
41 |
+
# Load the model and processor
|
42 |
+
model = VideoGPT.from_pretrained("huggingface/video-gpt")
|
43 |
+
processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
|
44 |
+
|
45 |
+
def generate_crossover_video(video1_path, video2_path, output_path):
|
46 |
+
# Load and process the input videos
|
47 |
+
video1 = processor(video1_path)
|
48 |
+
video2 = processor(video2_path)
|
49 |
+
|
50 |
+
# Generate crossover video
|
51 |
+
with torch.no_grad():
|
52 |
+
crossover_video = model.generate(video1, video2)
|
53 |
+
|
54 |
+
# Save the generated video
|
55 |
+
crossover_video.save(output_path)
|
56 |
+
|
57 |
+
def combine_cars_videos(video1_path, video2_path, output_path):
|
58 |
+
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
|
59 |
+
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
|
60 |
+
|
61 |
+
final_clip = concatenate_videoclips([clip1, clip2])
|
62 |
+
final_clip.write_videofile(output_path, codec="libx264")
|
63 |
+
|
64 |
+
# Example usage
|
65 |
+
generate_crossover_video("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/output_crossover_video.mp4")
|
66 |
+
combine_cars_videos("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/final_output_video.mp4")
|
67 |
+
|
68 |
+
import torch
|
69 |
+
from transformers import VideoGPT, VideoProcessor # Hypothetical models
|
70 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
71 |
+
|
72 |
+
# Load the model and processor (hypothetical)
|
73 |
+
model = VideoGPT.from_pretrained("huggingface/video-gpt")
|
74 |
+
processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
|
75 |
+
|
76 |
+
def generate_crossover_video(video1_path, video2_path, output_path):
|
77 |
+
# Load and process the input videos
|
78 |
+
video1 = processor(video1_path)
|
79 |
+
video2 = processor(video2_path)
|
80 |
+
|
81 |
+
# Generate a crossover video
|
82 |
+
with torch.no_grad():
|
83 |
+
crossover_video = model.generate(video1, video2)
|
84 |
+
|
85 |
+
# Save the generated video
|
86 |
+
crossover_video.save(output_path)
|
87 |
+
|
88 |
+
def combine_bfdi_videos(video1_path, video2_path, output_path):
|
89 |
+
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
|
90 |
+
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
|
91 |
+
|
92 |
+
final_clip = concatenate_videoclips([clip1, clip2])
|
93 |
+
final_clip.write_videofile(output_path, codec="libx264")
|
94 |
+
|
95 |
+
# Example usage
|
96 |
+
generate_crossover_video("path/to/bfd1_video.mp4", "path/to/bfb_video.mp4", "path/to/output_crossover_video.mp4")
|
97 |
+
combine_bfdi_videos("path/to/bfdia_video.mp4", "path/to/tpot_video.mp4", "path/to/final_output_video.mp4")
|
98 |
+
|
99 |
+
import torch
|
100 |
+
from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models
|
101 |
+
from moviepy.editor import VideoFileClip, concatenate_videoclips
|
102 |
+
|
103 |
+
# Load the model and processor
|
104 |
+
model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model
|
105 |
+
processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor
|
106 |
+
|
107 |
+
def generate_crossover_video(video1_path, video2_path, output_path):
|
108 |
+
# Load and process the input videos
|
109 |
+
video1 = processor(video1_path)
|
110 |
+
video2 = processor(video2_path)
|
111 |
+
|
112 |
+
# Generate a crossover video
|
113 |
+
with torch.no_grad():
|
114 |
+
crossover_video = model.generate(video1, video2)
|
115 |
+
|
116 |
+
# Save the generated video
|
117 |
+
crossover_video.save(output_path)
|
118 |
+
|
119 |
+
def combine_mario_videos(video1_path, video2_path, output_path):
|
120 |
+
clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
|
121 |
+
clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
|
122 |
+
|
123 |
+
final_clip = concatenate_videoclips([clip1, clip2])
|
124 |
+
final_clip.write_videofile(output_path, codec="libx264")
|
125 |
+
|
126 |
+
# Example usage
|
127 |
+
generate_crossover_video("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/output_crossover_video.mp4")
|
128 |
+
combine_mario_videos("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/final_output_video.mp4")
|
129 |
+
|
130 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|