animatedaliensfans commited on
Commit
1a7e310
·
verified ·
1 Parent(s): 9e3dfc4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md CHANGED
@@ -34,4 +34,97 @@ def generate_crossover_video(video1_path, video2_path, output_path):
34
  # Example usage
35
  generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4")
36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
34
  # Example usage
35
  generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4")
36
 
37
+ import torch
38
+ from transformers import VideoGPT, VideoProcessor
39
+ from moviepy.editor import VideoFileClip, concatenate_videoclips
40
+
41
+ # Load the model and processor
42
+ model = VideoGPT.from_pretrained("huggingface/video-gpt")
43
+ processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
44
+
45
+ def generate_crossover_video(video1_path, video2_path, output_path):
46
+ # Load and process the input videos
47
+ video1 = processor(video1_path)
48
+ video2 = processor(video2_path)
49
+
50
+ # Generate crossover video
51
+ with torch.no_grad():
52
+ crossover_video = model.generate(video1, video2)
53
+
54
+ # Save the generated video
55
+ crossover_video.save(output_path)
56
+
57
+ def combine_cars_videos(video1_path, video2_path, output_path):
58
+ clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
59
+ clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
60
+
61
+ final_clip = concatenate_videoclips([clip1, clip2])
62
+ final_clip.write_videofile(output_path, codec="libx264")
63
+
64
+ # Example usage
65
+ generate_crossover_video("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/output_crossover_video.mp4")
66
+ combine_cars_videos("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/final_output_video.mp4")
67
+
68
+ import torch
69
+ from transformers import VideoGPT, VideoProcessor # Hypothetical models
70
+ from moviepy.editor import VideoFileClip, concatenate_videoclips
71
+
72
+ # Load the model and processor (hypothetical)
73
+ model = VideoGPT.from_pretrained("huggingface/video-gpt")
74
+ processor = VideoProcessor.from_pretrained("huggingface/video-gpt")
75
+
76
+ def generate_crossover_video(video1_path, video2_path, output_path):
77
+ # Load and process the input videos
78
+ video1 = processor(video1_path)
79
+ video2 = processor(video2_path)
80
+
81
+ # Generate a crossover video
82
+ with torch.no_grad():
83
+ crossover_video = model.generate(video1, video2)
84
+
85
+ # Save the generated video
86
+ crossover_video.save(output_path)
87
+
88
+ def combine_bfdi_videos(video1_path, video2_path, output_path):
89
+ clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
90
+ clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
91
+
92
+ final_clip = concatenate_videoclips([clip1, clip2])
93
+ final_clip.write_videofile(output_path, codec="libx264")
94
+
95
+ # Example usage
96
+ generate_crossover_video("path/to/bfd1_video.mp4", "path/to/bfb_video.mp4", "path/to/output_crossover_video.mp4")
97
+ combine_bfdi_videos("path/to/bfdia_video.mp4", "path/to/tpot_video.mp4", "path/to/final_output_video.mp4")
98
+
99
+ import torch
100
+ from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models
101
+ from moviepy.editor import VideoFileClip, concatenate_videoclips
102
+
103
+ # Load the model and processor
104
+ model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model
105
+ processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor
106
+
107
+ def generate_crossover_video(video1_path, video2_path, output_path):
108
+ # Load and process the input videos
109
+ video1 = processor(video1_path)
110
+ video2 = processor(video2_path)
111
+
112
+ # Generate a crossover video
113
+ with torch.no_grad():
114
+ crossover_video = model.generate(video1, video2)
115
+
116
+ # Save the generated video
117
+ crossover_video.save(output_path)
118
+
119
+ def combine_mario_videos(video1_path, video2_path, output_path):
120
+ clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1
121
+ clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2
122
+
123
+ final_clip = concatenate_videoclips([clip1, clip2])
124
+ final_clip.write_videofile(output_path, codec="libx264")
125
+
126
+ # Example usage
127
+ generate_crossover_video("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/output_crossover_video.mp4")
128
+ combine_mario_videos("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/final_output_video.mp4")
129
+
130
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference