animatedaliensfans commited on
Commit
6be3d53
·
verified ·
1 Parent(s): 0659b7b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -31
app.py CHANGED
@@ -1,52 +1,52 @@
1
  import os
2
- import torch
3
  from moviepy.editor import VideoFileClip, concatenate_videoclips
4
- from transformers import Video2TextProcessor, Video2TextModel
5
 
6
- # Set your model name here
7
- MODEL_NAME = "your_chosen_model"
8
-
9
- # Load the Hugging Face model and processor
10
- try:
11
- model = Video2TextModel.from_pretrained(MODEL_NAME)
12
- processor = Video2TextProcessor.from_pretrained(MODEL_NAME)
13
- except Exception as e:
14
- print(f"Error loading model or processor: {e}")
15
- exit(1)
16
 
 
17
  def generate_crossover_video(video1_path, video2_path, output_path):
18
- """Generate a crossover video from two input videos."""
19
-
20
- # Check if video files exist
21
  if not os.path.isfile(video1_path):
22
  print(f"Error: {video1_path} does not exist.")
23
  return
 
 
24
  if not os.path.isfile(video2_path):
25
  print(f"Error: {video2_path} does not exist.")
26
  return
 
27
 
28
- try:
29
- # Load video clips
30
- clip1 = VideoFileClip(video1_path)
31
- clip2 = VideoFileClip(video2_path)
32
-
33
- # Here you'd process the clips with your model
34
- # Example: Generate a video cross using the model (this is hypothetical)
35
- processed_clip1 = processor(clip1)
36
- processed_clip2 = processor(clip2)
37
-
38
- # Combine clips into one video
39
- final_clip = concatenate_videoclips([processed_clip1, processed_clip2])
40
- final_clip.write_videofile(output_path)
41
- print(f"Crossover video saved to {output_path}")
42
 
43
- except Exception as e:
44
- print(f"Error during video processing: {e}")
 
 
 
 
45
 
46
  def main():
47
  video1_path = input("Enter the path to the first video: ")
48
  video2_path = input("Enter the path to the second video: ")
49
  output_path = input("Enter the output file path (e.g., crossover_output.mp4): ")
 
 
 
 
 
 
 
 
50
  generate_crossover_video(video1_path, video2_path, output_path)
51
 
52
  if __name__ == "__main__":
 
1
  import os
 
2
  from moviepy.editor import VideoFileClip, concatenate_videoclips
3
+ from transformers import VideoProcessor, VideoModel # Replace with actual imports if needed
4
 
5
+ # Function to load the Hugging Face model and processor
6
+ def load_model(model_name):
7
+ try:
8
+ model = VideoModel.from_pretrained(model_name)
9
+ processor = VideoProcessor.from_pretrained(model_name)
10
+ return model, processor
11
+ except Exception as e:
12
+ print(f"Error loading model: {e}")
13
+ return None, None
 
14
 
15
+ # Function to generate the crossover video
16
  def generate_crossover_video(video1_path, video2_path, output_path):
 
 
 
17
  if not os.path.isfile(video1_path):
18
  print(f"Error: {video1_path} does not exist.")
19
  return
20
+ print(f"Processing Video 1: {video1_path}")
21
+
22
  if not os.path.isfile(video2_path):
23
  print(f"Error: {video2_path} does not exist.")
24
  return
25
+ print(f"Processing Video 2: {video2_path}")
26
 
27
+ # Load video clips
28
+ clip1 = VideoFileClip(video1_path)
29
+ clip2 = VideoFileClip(video2_path)
 
 
 
 
 
 
 
 
 
 
 
30
 
31
+ # For now, just concatenating the clips directly
32
+ final_clip = concatenate_videoclips([clip1, clip2])
33
+
34
+ # Write the output video file
35
+ final_clip.write_videofile(output_path, codec='libx264')
36
+ print(f"Crossover video saved to {output_path}")
37
 
38
  def main():
39
  video1_path = input("Enter the path to the first video: ")
40
  video2_path = input("Enter the path to the second video: ")
41
  output_path = input("Enter the output file path (e.g., crossover_output.mp4): ")
42
+
43
+ model_name = "your_model_name" # Replace with the actual model name you want to use
44
+ model, processor = load_model(model_name)
45
+
46
+ if model is None or processor is None:
47
+ print("Model loading failed. Exiting the application.")
48
+ return
49
+
50
  generate_crossover_video(video1_path, video2_path, output_path)
51
 
52
  if __name__ == "__main__":