--- title: A Video Crossover Generator emoji: 🌍 colorFrom: green colorTo: green sdk: gradio sdk_version: 5.9.1 app_file: app.py pinned: false license: gpl-3.0 short_description: made by movies --- pip install transformers torch torchvision import torch from transformers import VideoGPT, VideoProcessor # Load a pre-trained video generation model model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt") def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path) # Generate a crossover video with torch.no_grad(): crossover_video = model.generate(video1, video2) # Save the generated video crossover_video.save(output_path) # Example usage generate_crossover_video("path/to/video1.mp4", "path/to/video2.mp4", "path/to/output_video.mp4") import torch from transformers import VideoGPT, VideoProcessor from moviepy.editor import VideoFileClip, concatenate_videoclips # Load the model and processor model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt") def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path) # Generate crossover video with torch.no_grad(): crossover_video = model.generate(video1, video2) # Save the generated video crossover_video.save(output_path) def combine_cars_videos(video1_path, video2_path, output_path): clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1 clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2 final_clip = concatenate_videoclips([clip1, clip2]) final_clip.write_videofile(output_path, codec="libx264") # Example usage generate_crossover_video("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/output_crossover_video.mp4") combine_cars_videos("path/to/cars_video1.mp4", "path/to/cars_video2.mp4", "path/to/final_output_video.mp4") import torch from transformers import VideoGPT, VideoProcessor # Hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips # Load the model and processor (hypothetical) model = VideoGPT.from_pretrained("huggingface/video-gpt") processor = VideoProcessor.from_pretrained("huggingface/video-gpt") def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path) # Generate a crossover video with torch.no_grad(): crossover_video = model.generate(video1, video2) # Save the generated video crossover_video.save(output_path) def combine_bfdi_videos(video1_path, video2_path, output_path): clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1 clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2 final_clip = concatenate_videoclips([clip1, clip2]) final_clip.write_videofile(output_path, codec="libx264") # Example usage generate_crossover_video("path/to/bfd1_video.mp4", "path/to/bfb_video.mp4", "path/to/output_crossover_video.mp4") combine_bfdi_videos("path/to/bfdia_video.mp4", "path/to/tpot_video.mp4", "path/to/final_output_video.mp4") import torch from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips # Load the model and processor model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path) # Generate a crossover video with torch.no_grad(): crossover_video = model.generate(video1, video2) # Save the generated video crossover_video.save(output_path) def combine_mario_videos(video1_path, video2_path, output_path): clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1 clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2 final_clip = concatenate_videoclips([clip1, clip2]) final_clip.write_videofile(output_path, codec="libx264") # Example usage generate_crossover_video("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/output_crossover_video.mp4") combine_mario_videos("path/to/mario_video1.mp4", "path/to/mario_video2.mp4", "path/to/final_output_video.mp4") # Load the model and processor model = VideoGPT.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained model processor = VideoProcessor.from_pretrained("huggingface/video-gpt") # Replace with an actual pre-trained processor import torch from transformers import VideoGPT, VideoProcessor # Note: These are hypothetical models from moviepy.editor import VideoFileClip, concatenate_videoclips def generate_crossover_video(video1_path, video2_path, output_path): # Load and process the input videos video1 = processor(video1_path) video2 = processor(video2_path) # Generate a crossover video with torch.no_grad(): crossover_video = model.generate(video1, video2) # Save the generated video crossover_video.save(output_path) def combine_minecraft_videos(video1_path, video2_path, output_path): clip1 = VideoFileClip(video1_path).subclip(0, 10) # Take the first 10 seconds of video1 clip2 = VideoFileClip(video2_path).subclip(0, 10) # Take the first 10 seconds of video2 final_clip = concatenate_videoclips([clip1, clip2]) final_clip.write_videofile(output_path, codec="libx264") # Example usage generate_crossover_video("path/to/minecraft_video1.mp4", "path/to/minecraft_video2.mp4", "path/to/output_crossover_video.mp4") combine_minecraft_videos("path/to/minecraft_video1.mp4", "path/to/minecraft_video2.mp4", "path/to/final_output_video.mp4") Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference