Spaces:
Sleeping
Sleeping
File size: 8,327 Bytes
10125b1 b6d19d9 3260328 b6d19d9 ea53b3c b6d19d9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 |
import sys
import streamlit as st
from pinecone import Pinecone
from langchain_openai import ChatOpenAI
from langchain_ollama import ChatOllama
from langgraph.pregel import GraphRecursionError
import tempfile
import os
import time
from pathlib import Path
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from src.vectorstore.pinecone_db import ingest_data, get_retriever, load_documents, process_chunks, save_to_parquet
from src.agents.workflow import run_adaptive_rag
# Page config
st.set_page_config(page_title="RAG Chat Assistant", layout="wide")
# Initialize session states
if "messages" not in st.session_state:
st.session_state.messages = []
if "documents_processed" not in st.session_state:
st.session_state.documents_processed = False
if "retriever" not in st.session_state:
st.session_state.retriever = None
if "pinecone_client" not in st.session_state:
st.session_state.pinecone_client = None
def initialize_pinecone(api_key):
"""Initialize Pinecone client with API key."""
try:
return Pinecone(api_key=api_key)
except Exception as e:
st.error(f"Error initializing Pinecone: {str(e)}")
return None
def initialize_llm(llm_option, openai_api_key=None):
"""Initialize LLM based on user selection."""
if llm_option == "OpenAI":
if not openai_api_key:
st.sidebar.warning("Please enter OpenAI API key.")
return None
return ChatOpenAI(api_key=openai_api_key, model="gpt-3.5-turbo")
else:
return ChatOllama(model="llama3.2", temperature=0.3, num_predict=512, top_p=0.6)
def clear_pinecone_index(pc, index_name="vector-index"):
"""Clear the Pinecone index."""
try:
pc.delete_index(index_name)
st.session_state.documents_processed = False
st.session_state.retriever = None
st.success("Database cleared successfully!")
except Exception as e:
st.error(f"Error clearing database: {str(e)}")
def process_documents(uploaded_files, pc):
"""Process uploaded documents and store in Pinecone."""
if not uploaded_files:
st.warning("Please upload at least one document.")
return False
with st.spinner("Processing documents..."):
temp_dir = tempfile.mkdtemp()
file_paths = []
markdown_path = Path(temp_dir) / "combined.md"
parquet_path = Path(temp_dir) / "documents.parquet"
for uploaded_file in uploaded_files:
file_path = Path(temp_dir) / uploaded_file.name
with open(file_path, "wb") as f:
f.write(uploaded_file.getvalue())
file_paths.append(str(file_path))
try:
markdown_path = load_documents(file_paths, output_path=markdown_path)
chunks = process_chunks(markdown_path, chunk_size=256, threshold=0.6)
print(f"Processed chunks: {chunks}")
parquet_path = save_to_parquet(chunks, parquet_path)
ingest_data(
pc=pc,
parquet_path=parquet_path,
text_column="text",
pinecone_client=pc
)
st.session_state.retriever = get_retriever(pc)
st.session_state.documents_processed = True
return True
except Exception as e:
st.error(f"Error processing documents: {str(e)}")
return False
finally:
for file_path in file_paths:
try:
os.remove(file_path)
except:
pass
try:
os.rmdir(temp_dir)
except:
pass
def run_rag_with_streaming(retriever, question, llm, enable_web_search=False):
"""Run RAG workflow and yield streaming results."""
try:
response = run_adaptive_rag(
retriever=retriever,
question=question,
llm=llm,
top_k=5,
enable_websearch=enable_web_search
)
for word in response.split():
yield word + " "
time.sleep(0.03)
except GraphRecursionError:
response = "I apologize, but I cannot find a sufficient answer to your question in the provided documents. Please try rephrasing your question or ask something else about the content of the documents."
for word in response.split():
yield word + " "
time.sleep(0.03)
except Exception as e:
yield f"I encountered an error while processing your question: {str(e)}"
def main():
st.title("π€ RAG Chat Assistant")
# Sidebar configuration
st.sidebar.title("Configuration")
# API Keys in sidebar
pinecone_api_key = st.sidebar.text_input("Enter Pinecone API Key:", type="password")
# LLM Selection
llm_option = st.sidebar.selectbox("Select Language Model:", ["OpenAI"])
openai_api_key = None
if llm_option == "OpenAI":
openai_api_key = st.sidebar.text_input("Enter OpenAI API Key:", type="password")
# Web search tool in sidebar
st.sidebar.markdown("---")
st.sidebar.markdown("### Tools")
use_web_search = st.sidebar.checkbox("Web search")
# Initialize Pinecone
if pinecone_api_key:
if st.session_state.pinecone_client is None:
st.session_state.pinecone_client = initialize_pinecone(pinecone_api_key)
else:
st.sidebar.warning("Please enter Pinecone API key to continue.")
st.stop()
# Initialize LLM
llm = initialize_llm(llm_option, openai_api_key)
if llm is None:
st.stop()
# Clear DB Button
st.sidebar.markdown("---")
if st.sidebar.button("Clear Database"):
if st.session_state.pinecone_client:
clear_pinecone_index(st.session_state.pinecone_client)
st.session_state.messages = [] # Clear chat history
# Document upload section
if not st.session_state.documents_processed:
st.header("π Document Upload")
uploaded_files = st.file_uploader(
"Upload your documents",
accept_multiple_files=True,
type=["pdf", "docx", "txt", "pptx", "md"]
)
if st.button("Process Documents"):
if process_documents(uploaded_files, st.session_state.pinecone_client):
st.success("Documents processed successfully!")
# Chat interface
if st.session_state.documents_processed:
st.header("π¬ Chat")
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Ask a question about your documents..."):
# Display user message
with st.chat_message("user"):
if use_web_search:
st.markdown(prompt.strip() + ''' :red-background[Web Search]''')
else:
st.markdown(prompt)
st.session_state.messages.append({"role": "user", "content": prompt})
# Generate and stream response
with st.chat_message("assistant"):
response_container = st.empty()
full_response = ""
# Show spinner while processing
with st.spinner("Thinking..."):
# Stream the response
for chunk in run_rag_with_streaming(
retriever=st.session_state.retriever,
question=prompt,
llm=llm,
enable_web_search=use_web_search
):
full_response += chunk
response_container.markdown(full_response + "β")
# Final update without cursor
response_container.markdown(full_response)
# Save to chat history
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
if __name__ == "__main__":
main() |