Table-aware-RAG / src /vectordb.py
anindya-hf-2002's picture
Upload 12 files
fe52a97 verified
from typing import List, Dict, Any, Optional
import pandas as pd
import time
from tqdm import tqdm
import logging
from pinecone import Pinecone, ServerlessSpec
from dataclasses import dataclass
from enum import Enum
from src.table_aware_chunker import TableRecursiveChunker
from src.processor import TableProcessor
from src.llm import LLMChat
from src.embedding import EmbeddingModel
from chonkie import RecursiveRules
from src.loader import MultiFormatDocumentLoader
from dotenv import load_dotenv
import os
load_dotenv()
# API Keys
PINECONE_API_KEY = os.getenv('PINECONE_API_KEY')
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger('table_aware_rag')
class ChunkType(Enum):
TEXT = "text_chunk"
TABLE = "table_chunk"
@dataclass
class ProcessedChunk:
text: str # This will be the embedable text (table description for tables)
chunk_type: ChunkType
token_count: int
markdown_table: Optional[str] = None # Store original markdown table format
start_index: Optional[int] = None
end_index: Optional[int] = None
def process_documents(
file_paths: List[str],
chunker: TableRecursiveChunker,
processor: TableProcessor,
output_path: str = './output.md'
) -> List[ProcessedChunk]:
"""
Process documents into text and table chunks
"""
# Load documents
loader = MultiFormatDocumentLoader(
file_paths=file_paths,
enable_ocr=False,
enable_tables=True
)
# Save to markdown and read content
with open(output_path, 'w') as f:
for doc in loader.lazy_load():
f.write(doc.page_content)
with open(output_path, 'r') as file:
text = file.read()
# Get text and table chunks
text_chunks, table_chunks = chunker.chunk(text)
# Process chunks
processed_chunks = []
# Process text chunks
for chunk in text_chunks:
processed_chunks.append(
ProcessedChunk(
text=chunk.text,
chunk_type=ChunkType.TEXT,
token_count=chunk.token_count,
start_index=chunk.start_index,
end_index=chunk.end_index
)
)
# Process table chunks
table_results = processor(table_chunks)
for table in table_results:
# Convert table chunk to string representation if needed
table_str = str(table["text"].text)
processed_chunks.append(
ProcessedChunk(
text=table["table_description"], # Use description for embedding
chunk_type=ChunkType.TABLE,
token_count=len(table["table_description"].split()),
markdown_table=table_str # Store string version of table
)
)
return processed_chunks
class PineconeRetriever:
def __init__(
self,
pinecone_client: Pinecone,
index_name: str,
namespace: str,
embedding_model: Any,
llm_model: Any
):
"""
Initialize retriever with configurable models
"""
self.pinecone = pinecone_client
self.index = self.pinecone.Index(index_name)
self.namespace = namespace
self.embedding_model = embedding_model
self.llm_model = llm_model
def _prepare_query(self, question: str) -> List[float]:
"""Generate embedding for query"""
return self.embedding_model.embed(question)
def invoke(
self,
question: str,
top_k: int = 5,
chunk_type_filter: Optional[ChunkType] = None
) -> List[Dict[str, Any]]:
"""
Retrieve similar documents with optional filtering by chunk type
"""
query_embedding = self._prepare_query(question)
# Prepare filter if chunk type specified
filter_dict = None
if chunk_type_filter:
filter_dict = {"chunk_type": chunk_type_filter.value}
results = self.index.query(
namespace=self.namespace,
vector=query_embedding,
top_k=top_k,
include_values=False,
include_metadata=True,
filter=filter_dict
)
retrieved_docs = []
for match in results.matches:
doc = {
"score": match.score,
"chunk_type": match.metadata["chunk_type"]
}
# Handle different chunk types
if match.metadata["chunk_type"] == ChunkType.TABLE.value:
doc["table_description"] = match.metadata["text"] # The embedded description
doc["markdown_table"] = match.metadata["markdown_table"] # Original table format
else:
doc["page_content"] = match.metadata["text"]
retrieved_docs.append(doc)
return retrieved_docs
def ingest_data(
processed_chunks: List[ProcessedChunk],
embedding_model: Any,
pinecone_client: Pinecone,
index_name: str = "vector-index",
namespace: str = "rag",
batch_size: int = 100
):
"""
Ingest processed chunks into Pinecone
"""
# Create or get index
if not pinecone_client.has_index(index_name):
pinecone_client.create_index(
name=index_name,
dimension=768,
metric="cosine",
spec=ServerlessSpec(
cloud='aws',
region='us-east-1'
)
)
while not pinecone_client.describe_index(index_name).status['ready']:
time.sleep(1)
index = pinecone_client.Index(index_name)
# Process in batches
for i in tqdm(range(0, len(processed_chunks), batch_size)):
batch = processed_chunks[i:i+batch_size]
# Generate embeddings for the text content
texts = [chunk.text for chunk in batch]
embeddings = embedding_model.embed_batch(texts)
# Prepare records
records = []
for idx, chunk in enumerate(batch):
metadata = {
"text": chunk.text, # This is the description for tables
"chunk_type": chunk.chunk_type.value,
"token_count": chunk.token_count
}
# Add markdown table to metadata if it's a table chunk
if chunk.markdown_table is not None:
# Ensure the table is in string format
metadata["markdown_table"] = str(chunk.markdown_table)
records.append({
"id": f"chunk_{i + idx}",
"values": embeddings[idx],
"metadata": metadata
})
# Upsert to Pinecone
try:
index.upsert(vectors=records, namespace=namespace)
except Exception as e:
logger.error(f"Error during upsert: {str(e)}")
logger.error(f"Problematic record metadata: {records[0]['metadata']}")
raise
time.sleep(0.5) # Rate limiting
def main():
# Initialize components
pc = Pinecone(api_key=PINECONE_API_KEY)
chunker = TableRecursiveChunker(
tokenizer="gpt2",
chunk_size=512,
rules=RecursiveRules(),
min_characters_per_chunk=12
)
llm = LLMChat("qwen2.5:0.5b")
embedder = EmbeddingModel("nomic-embed-text")
processor = TableProcessor(
llm_model=llm,
embedding_model=embedder,
batch_size=8
)
try:
# Process documents
processed_chunks = process_documents(
file_paths=['/teamspace/studios/this_studio/TabularRAG/data/FeesPaymentReceipt_7thsem.pdf'],
chunker=chunker,
processor=processor
)
# Ingest data
ingest_data(
processed_chunks=processed_chunks,
embedding_model=embedder,
pinecone_client=pc
)
# Test retrieval
retriever = PineconeRetriever(
pinecone_client=pc,
index_name="vector-index",
namespace="rag",
embedding_model=embedder,
llm_model=llm
)
# # Test text-only retrieval
# text_results = retriever.invoke(
# question="What is paid fees amount?",
# top_k=3,
# chunk_type_filter=ChunkType.TEXT
# )
# print("Text results:")
# for result in text_results:
# print(result)
# Test table-only retrieval
# table_results = retriever.invoke(
# question="What is paid fees amount?",
# top_k=3,
# chunk_type_filter=ChunkType.TABLE
# )
# print("Table results:")
# for result in table_results:
# print(result)
results = retriever.invoke(
question="What is paid fees amount?",
top_k=3
)
for i, result in enumerate(results, 1):
print(f"\nResult {i}:")
if result["chunk_type"] == ChunkType.TABLE.value:
print(f"Table Description: {result['table_description']}")
print("Table Format:")
print(result['markdown_table'])
else:
print(f"Content: {result['page_content']}")
print(f"Score: {result['score']}")
except Exception as e:
logger.error(f"Error in pipeline: {str(e)}")
if __name__ == "__main__":
main()