Spaces:
Sleeping
Sleeping
File size: 13,005 Bytes
8b561c4 b7b3694 8b561c4 b7b3694 8b561c4 b7b3694 8b561c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import sqlite3
__import__('pysqlite3')
import sys
sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
import streamlit as st
import pandas as pd
import tempfile
import shutil
import glob
import plotly.graph_objs as go
import plotly.io as pio
import json
from vanna.openai import OpenAI_Chat
from vanna.chromadb import ChromaDB_VectorStore
class MyVanna(ChromaDB_VectorStore, OpenAI_Chat):
def __init__(self, config=None):
# Get the directory of the current script
script_dir = os.path.dirname(os.path.abspath(__file__))
# Create temp directories in the script's parent directory
temp_dir = os.path.join(script_dir, 'temp_talk2table')
os.makedirs(temp_dir, exist_ok=True)
# ChromaDB path
chroma_path = os.path.join(temp_dir, 'chromadb')
# Update config with local paths
if config is None:
config = {}
config['persist_directory'] = chroma_path
ChromaDB_VectorStore.__init__(self, config=config)
OpenAI_Chat.__init__(self, config=config)
def clear_existing_databases():
"""
Clear existing temporary databases and directories
"""
script_dir = os.path.dirname(os.path.abspath(__file__))
temp_dir = os.path.join(script_dir, 'temp_talk2table')
if os.path.exists(temp_dir):
try:
shutil.rmtree(temp_dir)
st.success("Temporary databases and directories cleared successfully.")
except Exception as e:
st.error(f"Error clearing databases: {e}")
else:
st.info("No temporary databases found.")
@st.cache_resource(ttl=3600)
def setup_vanna(openai_api_key):
"""
Set up Vanna instance with caching to prevent recreation on every rerun
"""
vn = MyVanna(config={
'api_key': openai_api_key,
'model': 'gpt-3.5-turbo-0125',
'allow_llm_to_see_data': True
})
return vn
@st.cache_data(ttl=3600)
def load_csv_to_sqlite(csv_file, table_name='user_data'):
"""
Cache the CSV to SQLite conversion with local temp directory
"""
# Get the directory of the current script
script_dir = os.path.dirname(os.path.abspath(__file__))
temp_dir = os.path.join(script_dir, 'temp_talk2table')
os.makedirs(temp_dir, exist_ok=True)
# Create SQLite database in the temp directory
db_path = os.path.join(temp_dir, 'vanna_user_database.sqlite')
df = pd.read_csv(csv_file, encoding_errors='ignore')
conn = sqlite3.connect(db_path)
df.to_sql(table_name, conn, if_exists='replace', index=False)
conn.close()
return db_path, df
@st.cache_data(ttl=3600)
def convert_to_information_schema_df(input_df):
"""
Convert input DataFrame to information schema DataFrame
"""
rows = []
database = 'main'
schema = 'public'
table_name = 'user_data'
for _, row in input_df.iterrows():
row_data = {
'TABLE_CATALOG': database,
'TABLE_SCHEMA': schema,
'TABLE_NAME': table_name,
'COLUMN_NAME': row['name'],
'DATA_TYPE': row['type'],
'IS_NULLABLE': 'NO' if row['notnull'] else 'YES',
'COLUMN_DEFAULT': row['dflt_value'],
'IS_PRIMARY_KEY': 'YES' if row['pk'] else 'NO'
}
rows.append(row_data)
return pd.DataFrame(rows)
def generate_followup_questions_cached(vn, prompt, sql=None, df=None):
"""
Safely generate follow-up questions with optional SQL and DataFrame
"""
try:
# If both SQL and DataFrame are provided, use the method that requires them
if sql is not None and df is not None:
similar_questions = vn.generate_followup_questions(prompt, sql, df)
else:
# Fallback to method without SQL and DataFrame
similar_questions = vn.generate_followup_questions(prompt)
# Ensure we're working with a list of questions
if isinstance(similar_questions, list):
# If list of dicts, extract questions
if similar_questions and isinstance(similar_questions[0], dict):
similar_questions = [q.get('question', '') for q in similar_questions if isinstance(q, dict)]
# Remove empty strings and duplicates
similar_questions = list(dict.fromkeys(filter(bool, similar_questions)))
else:
similar_questions = []
return similar_questions[:5] # Limit to 5 follow-up questions
except Exception as e:
st.warning(f"Error getting similar questions: {e}")
return []
def main():
st.set_page_config(page_title="Talk2Table", layout="wide")
st.title("🤖 Talk2Table")
# Sidebar for configuration
st.sidebar.header("OpenAI Configuration")
openai_api_key = st.sidebar.text_input(label="OpenAI API KEY", placeholder="sk-...", type="password")
# # Add a button to clear existing databases
# if st.sidebar.button("Clear Temp Databases"):
# clear_existing_databases()
# Configuration checkboxes
show_sql = st.sidebar.checkbox("Show SQL Query", value=False)
show_table = st.sidebar.checkbox("Show Data Table", value=True)
show_chart = st.sidebar.checkbox("Show Plotly Chart", value=True)
show_summary = st.sidebar.checkbox("Show Summary", value=True)
# Initialize or reset session state
if 'messages' not in st.session_state:
st.session_state.messages = []
# Ensure these session state variables exist
if 'last_plot' not in st.session_state:
st.session_state.last_plot = None
# CSV File Upload
uploaded_file = st.file_uploader("Upload a CSV file", type=['csv'])
# Chat container
chat_container = st.container()
if uploaded_file is not None and openai_api_key:
# Save uploaded file temporarily and load to SQLite
script_dir = os.path.dirname(os.path.abspath(__file__))
temp_dir = os.path.join(script_dir, 'temp_talk2table')
os.makedirs(temp_dir, exist_ok=True)
temp_csv_path = os.path.join(temp_dir, uploaded_file.name)
with open(temp_csv_path, 'wb') as f:
f.write(uploaded_file.getbuffer())
# Load CSV to SQLite
db_path, df = load_csv_to_sqlite(temp_csv_path)
if db_path and df is not None:
# Setup Vanna instance with caching
vn = setup_vanna(openai_api_key)
# Connect to SQLite and train
vn.connect_to_sqlite(db_path)
# Train Vanna with table schema
df_information_schema = vn.run_sql("PRAGMA table_info('user_data');")
plan_df = convert_to_information_schema_df(df_information_schema)
# Enhanced training
plan = vn.get_training_plan_generic(plan_df)
vn.train(plan=plan)
# Display existing messages and their plots
with chat_container:
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# If the message has a plot and chart is enabled, display it
if message["role"] == "assistant" and 'plot' in message and show_chart:
try:
# Use plotly.io to parse the JSON figure
plot_fig = pio.from_json(message['plot'])
st.plotly_chart(plot_fig, use_container_width=True)
except Exception as e:
st.error(f"Error rendering plot: {e}")
# Sidebar for suggested questions
st.sidebar.header("Suggested Questions")
for q in st.session_state.get('similar_questions', []):
st.sidebar.markdown("* "+q)
prompt = st.chat_input("Ask a question about your data...")
if prompt:
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
with st.chat_message("assistant"):
with st.spinner("Generating answer..."):
try:
# Generate SQL with explicit allow_llm_to_see_data
sql, results_df, fig = vn.ask(
question=prompt,
print_results=False,
auto_train=True,
visualize=show_chart,
allow_llm_to_see_data=True
)
# Prepare response
response = ""
# Prepare message with plot
assistant_message = {
"role": "assistant",
"content": "",
"plot": None
}
# Update last successful query state
if sql:
st.session_state.last_prompt = prompt
st.session_state.last_sql = sql
st.session_state.last_df = results_df
if show_sql and sql:
response += f"**Generated SQL:**\n```sql\n{sql}\n```\n\n"
if show_summary and results_df is not None:
try:
summary = vn.generate_summary(prompt, results_df)
response += f"**Summary:**\n{summary}\n\n"
except Exception as sum_error:
st.warning(f"Could not generate summary: {sum_error}")
if show_table and results_df is not None:
try:
response += "**Data Results:**\n" + results_df.to_markdown() + "\n\n"
except Exception as table_error:
st.warning(f"Could not display table: {table_error}")
response += "**Data Results:** Unable to display table\n\n"
# Store the plot in the message only if chart is enabled and fig is not None
if show_chart and fig is not None:
# Use plotly.io to convert figure to JSON
plot_json = pio.to_json(fig, remove_uids=True)
assistant_message['plot'] = plot_json
st.session_state.last_plot = plot_json
st.plotly_chart(fig, use_container_width=True)
else:
# If chart is disabled or fig is None, use the last successful plot if available
if st.session_state.last_plot and show_chart:
try:
last_plot_fig = pio.from_json(st.session_state.last_plot)
st.plotly_chart(last_plot_fig, use_container_width=True)
except Exception as e:
st.warning(f"Could not render previous plot: {e}")
# Generate follow-up questions
similar_questions = generate_followup_questions_cached(
vn,
prompt,
sql=st.session_state.get('last_sql'),
df=st.session_state.get('last_df')
)
st.session_state.similar_questions = similar_questions
# Finalize the assistant message
assistant_message['content'] = response
st.session_state.messages.append(assistant_message)
st.markdown(response)
except Exception as e:
error_message = f"Error generating answer: {str(e)}"
st.error(error_message)
st.session_state.messages.append({"role": "assistant", "content": error_message})
else:
st.info("Please provide both OpenAI API Key and upload a CSV file to enable chat.")
if __name__ == "__main__":
main() |