Spaces:
Runtime error
Runtime error
File size: 1,556 Bytes
ad21763 25aff6c 2a3038f e882144 ad21763 88570c9 ad21763 532fa3f 95d1712 161b7ff ad21763 7772999 161b7ff 532fa3f ad21763 b81ae68 ad21763 161b7ff ad21763 161b7ff 355811f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
"""from fastai.vision.all import *
import gradio as gr
learn = load_learner('tokenizer.model')
categories = ('Rasam', 'Sambar')
def classify_image(img):
pred, idx, probs = learn.predict(img)
return dict(zip(categories, map(float, probs)))
image = gr.inputs.Image(shape=(192, 192))
label = gr.outputs.Label()
examples = ['sambar.jpg', 'rasam.jpg']
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples)
intf.launch()"""
import gradio as gr
"""import transformers
from transformers import AutoTokenizer
import torch
from diffusers.utils.torch_utils import randn_tensor
model = "anirudh-sub/debate_model_v2.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
def debate_response(text):
return "testing
sequences = pipeline(
text,
do_sample=True,
top_k=10,
num_return_sequences=1,
eos_token_id=tokenizer.eos_token_id,
max_length=500,
)
response = ""
for seq in sequences:
print(f"Result: {seq['generated_text']}")
reponse += {seq['generated_text']}
return resposnse
intf = gr.Interface(fn=debate_response, inputs=gr.Textbox(), outputs="text")
intf.launch()"""
# import gradio as gr
def greet(name):
return "Hello " + name + "!"
demo = gr.Interface(
fn=greet,
inputs=gr.Textbox(lines=2, placeholder="Name Here..."),
outputs="text",
)
if __name__ == "__main__":
demo.launch() |