import gradio as gr import transformers from transformers import AutoTokenizer import torch from diffusers.utils.torch_utils import randn_tensor model = "Glasshes/debate_v3.1_model" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) def debate_response(text): sequences = pipeline( "hello \n", do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=100, ) print(sequences) return "testing" intf = gr.Interface(fn=debate_response, inputs=gr.Textbox(), outputs="text") intf.launch()