"""from fastai.vision.all import * import gradio as gr learn = load_learner('tokenizer.model') categories = ('Rasam', 'Sambar') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['sambar.jpg', 'rasam.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()""" from transformers import AutoTokenizer import transformers import torch model = "anirudh-sub/debate_model_practice" def debate_response(text): sequences = pipeline( "How do I give a 1AR in debate in Lincoln Douglas Debate? \n", do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=500, ) response = "" for seq in sequences: reponse += {seq['generated_text']} return resposnse text = gr.inputs.Text() response = gr.outputs.Text() intf = gr.Interface(fn=debate_response, inputs=text, outputs=response)