"""from fastai.vision.all import * import gradio as gr learn = load_learner('tokenizer.model') categories = ('Rasam', 'Sambar') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['sambar.jpg', 'rasam.jpg'] intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()""" import transformers from transformers import AutoTokenizer import torch import gradio as gr from diffusers.utils.torch_utils import randn_tensor model = "anirudh-sub/debate_model_v2.1" tokenizer = AutoTokenizer.from_pretrained(model) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) def debate_response(text): return "testing" """sequences = pipeline( text, do_sample=True, top_k=10, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, max_length=500, ) response = "" for seq in sequences: print(f"Result: {seq['generated_text']}") reponse += {seq['generated_text']} return resposnse""" intf = gr.Interface(fn=debate_response, inputs=gr.Textbox(), outputs="text") intf.launch()