import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "anirudh-sub/debate_model_v2" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def generate_text(prompt): input_ids = tokenizer.encode(prompt, return_tensors="pt") output = model.generate(input_ids, max_length=100, num_return_sequences=1) generated_text = tokenizer.decode(output[0], skip_special_tokens=True) return generated_text iface = gr.Interface( fn=generate_text, inputs="text", outputs="text", live=True, title="Debate Model", description="This model generates text based on the input prompt using Llama.", ) iface.launch()