Spaces:
Sleeping
Sleeping
File size: 18,964 Bytes
8fd59af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 |
import ui
from typing import List
from pydantic import BaseModel, Field
import time
import gradio as gr
from llm_config import call_llm, get_llm_usage
import prompts
from colorama import Fore, Style
# Add these imports at the top
from search import fetch_search_results
from improve_content import ImproveContent
import re
# logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# logger = logging.getLogger(__name__)
class Section(BaseModel):
name: str = Field(
description="Name for this section of the report.",
)
description: str = Field(
description="Brief overview of the main topics and concepts to be covered in this section.",
)
questions: List[str] = Field(
description="Key Questions to answer in this section."
)
content: str = Field(
description="The content of the section."
)
class Sections(BaseModel):
sections: List[Section] = Field(
description="Sections of the report.",
)
@property
def as_str(self) -> str:
subsections = "\n\n".join(
f"## {section.name}\n\n-{section.description}\n\n- Questions: {'\n\n'.join(section.questions)}\n\n- Content: {section.content}\n"
for section in self.sections or []
)
return subsections
def print_sections(self) -> str:
return '\n\n'.join([s.content for s in self.sections])
class ResearchArea(BaseModel):
area : str = Field(..., title="Research Area")
search_terms : str = Field(..., title = "Search Term", description = "Search query that will help you find information")
class ResearchFocus(BaseModel):
areas : List[ResearchArea] = Field(..., title="Research Areas")
class RelevantSearchResults(BaseModel):
relevant_search_results : List[int] = Field(..., title="Relevant Search Results", description="The position of the search result in the search results list")
reasoning : List[str] = Field(..., title="Reasoning", description="Reasoning for selecting the search results")
class SearchTerm(BaseModel):
query : str = Field(..., title="Search Query")
#time_range : str = Field(..., title="Time Range", description="d/w/m/y/none")
class SearchTermsList(BaseModel):
queries : List[str] = Field(..., title="Search Terms as a list")
class Editor(BaseModel):
name: str = Field(
description="Name of the editor.",
)
affiliation: str = Field(
description="Primary affiliation of the editor.",
)
role: str = Field(
description="Role of the editor in the context of the topic.",
)
focus: str = Field(
description="Description of the editor's focus area, concerns and how they will help.",
)
@property
def persona(self) -> str:
return f"\nRole: {self.role}\nAffiliation: {self.affiliation}\nDescription: {self.focus}\n"
class Perspectives(BaseModel):
editors: List[Editor] = Field(
description="Comprehensive list of editors with their roles and affiliations.",
)
class ReportSynopsis(BaseModel):
synopsis: str= Field(..., title="Report Synopsis", description="A synopsis talking about what the reader can expect")
class SectionContent(BaseModel):
content: str = Field(..., title="Section Content", description="The content of the section")
class ResearchManager:
"""Manages the research process including analysis, search, and documentation"""
def __init__(self, research_task):
self.use_existing_outline = True
self.research_task = research_task
self.report_synopsis = ''
self.personas = ''
self.gradio_report_outline = ''
self.task_status = {
'synopsis_draft' : {"name": "Creating synopsis of the report...", "status": "pending"},
'gathering_info' : {"name": "Gathering Info on the topic...", "status": "pending"},
'running_searches' : {"name": "Run search...", "status": "pending"},
'mock_discussion' : {"name": "Conducting mock discussions...", "status": "pending"},
'generating_outline': {"name": "Generating a draft outline...", "status": "pending"},
}
def extract_citation_info(self,text):
"""
Extract citation number and URL from citation text
"""
references = {}
for ref in text:
# Find citation number
citation_match = re.search(r'\[(\d+)\]', ref)
citation_number = citation_match.group(1) if citation_match else None
# Find URL
url_match = re.search(r'URL: (https?://\S+)', ref)
url = url_match.group(1) if url_match else None
references[citation_number] = {
'url': url,
'reference_text': ref
}
return references
def section_writer(self, section: Section):
"""Given an outline of a section, generate search queries,
perform searches and generate the section content"""
improve_content = ImproveContent(section.name,
section.description,
section.questions,
self.personas.editors
)
improved_content = yield from improve_content.create_and_run_interview(self.task_status, self.update_gradio)
content, references = improve_content.generate_final_section(self.report_synopsis)
self.task_status[section.name]["name"] = "Writing Section: " + section.name
yield from self.update_gradio()
ui.system_update(f"Writing Section: {section.name}")
section_content = call_llm(
instructions=prompts.WRITE_SECTION_INSTRUCTIONS,
model_type='slow',
context={"section_description": section.description,
"gathered_info" : '\n\n'.join(content),
"topic": self.research_task['topic'],
"section_title" : section.name,
"synopsis" : self.report_synopsis,
"section_questions" : '\n'.join(section.questions),
'report_type': self.research_task['report_type'],
'section_length': self.research_task['section_length']},
response_model=SectionContent,
logging_fn='write_section_instructions'
)
#references = '\n\n'.join(references)
references_dict = self.extract_citation_info(references.split('\n\n'))
#Replacing citations with [2,3,4] format with [2][3][4]
cited_references_raw = re.findall(r'\[(\d+(?:,\s*\d+)*)\]', section_content.content)
for group in cited_references_raw:
nums_list = group.split(',')
new_string = ''.join(f'[{n.strip()}]' for n in nums_list)
old_string = f'[{group}]'
section_content.content = section_content.content.replace(old_string, new_string)
parsed_cited_references = []
for ref_group in cited_references_raw:
for ref_no in ref_group.split(','):
parsed_cited_references.append(ref_no.strip())
used_references = {}
uncited_sources= []
for reference_no in parsed_cited_references:
reference = references_dict.get(reference_no)
if reference:
used_references[reference_no] = reference
else:
print(f"Reference {reference_no} not found")
uncited_sources.append(reference_no)
section_content.content = section_content.content.replace(f"[{reference_no}]", "[!]")
for ref_no, data in used_references.items():
if data["url"]:
section_content.content = section_content.content.replace(f"[{ref_no}]", f"[[{ref_no}]]({data['url']})")
section.content = section_content.content
print(section_content.content)
self.task_status[section.name]["status"] = "done"
yield from self.update_gradio(report_outline_str=self.report_outline.print_sections(), button_disable=False)
ui.system_update("Waiting for 5 seconds before next section")
time.sleep(5)
return section
def _generate_report_outline(self):
"""Use LLM to generate focus areas for research based on the original query"""
ui.system_update(f"\nGathering Context..")
self.task_status['gathering_info']["status"] = "running"
yield from self.update_gradio()
queries = call_llm(
instructions=prompts.FIND_SEARCH_TERMS_INSTRUCTIONS,
model_type='fast',
context={
"report_type": self.research_task['report_type'],
"original_query": self.research_task['topic'],
"report_synopsis": self.report_synopsis,
},
response_model=SearchTermsList,
logging_fn='find_search_terms_instructions'
)
self.task_status['running_searches']["status"] = "running"
yield from self.update_gradio()
formatted_results, results = yield from fetch_search_results(query=queries.queries,
task_status=self.task_status,
task_name = 'running_searches',
fn = self.update_gradio)
self.context = formatted_results
self.task_status['running_searches']["status"] = "done"
self.task_status['gathering_info']["status"] = "done"
self.task_status['mock_discussion']["status"] = "running"
yield from self.update_gradio()
personas = call_llm(
instructions=prompts.GENERATE_ROUNDTABLE_PERSONAS_INSTRUCTIONS,
model_type='slow',
context={"context": self.context,
"topic": self.research_task['topic'],
"report_synopsis": self.report_synopsis,
'type_of_report': self.research_task['report_type'],
'num_personas': 5},
response_model=Perspectives,
logging_fn='generate_roundtable_personas_instructions'
)
self.task_status['mock_discussion']["name"] = "Started discussions..."
print(personas)
yield from self.update_gradio()
improve_content = ImproveContent(self.research_task['topic'],
"This section will focus on a comprehensive overview of glean",
self.research_task['key_questions'],
personas.editors)
warm_start_discussion = improve_content.warm_start_discussion()
self.task_status['mock_discussion']["name"] = "Mock discussions complete"
self.task_status['mock_discussion']["status"] = "done"
self.task_status['generating_outline']["status"] = "running"
yield from self.update_gradio()
ui.system_update("\nGenerating Report Outline..")
report_outline = call_llm(
instructions=prompts.GENERATE_REPORT_OUTLINE_INSTRUCTIONS,
model_type='slow',
context={
"report_type": self.research_task['report_type'],
"topic": self.research_task['topic'],
"context": self.context,
"discussion": '\n'.join(warm_start_discussion),
'num_sections': 3
},
response_model=Sections,
logging_fn='generate_report_outline_instructions'
)
self.task_status['generating_outline']["status"] = "done"
yield from self.update_gradio(report_outline_str=report_outline.as_str)
print(report_outline.as_str)
return report_outline
def validate_outline_with_human(self, report_outline: Sections) -> Sections:
"""Ask the human feedback and improve the report outline till they say 'OK' """
while True:
ui.system_update("\nPlease provide feedback on the generated report outline")
feedback = ui.get_multiline_input()
if feedback.lower() == 'ok':
return report_outline
ui.system_update("\nImproving the report outline based on your feedback")
extract_sections_chain = prompts.IMPROVE_REPORT_OUTLINE_PROMPT | self.llm.with_structured_output(Sections)
report_outline = extract_sections_chain.invoke({"topic": self.research_task['topic'], "feedback": feedback, "report_outline": report_outline.as_str})
ui.system_output(report_outline.as_str)
def create_report_synopsis(self):
return call_llm(
instructions=prompts.CREATE_SYNOPSIS_INSTRUCTIONS,
model_type='fast',
context={
"report_type": self.research_task['report_type'],
"topic": self.research_task['topic'],
"key_questions": self.research_task['key_questions'],
},
response_model=ReportSynopsis,
logging_fn='create_synopsis_instructions'
)
def update_gradio(self, report_outline_str = '', button_disable = False):
if report_outline_str != '':
self.gradio_report_outline = report_outline_str
yield [gr.update(interactive=button_disable), self.update_ui(), self.gradio_report_outline]
def start_research(self):
"""Main research loop with comprehensive functionality"""
self.task_status['synopsis_draft']["status"] = "running"
yield from self.update_gradio()
ui.system_update(f"Starting research on: {self.research_task['topic']}")
ui.system_update("\nGenerating report outline")
self.report_synopsis = self.create_report_synopsis()
self.task_status['synopsis_draft']["status"] = "done"
yield from self.update_gradio()
self.report_outline = yield from self._generate_report_outline()
#self.report_outline = self.validate_outline_with_human(self.report_outline)
for section in self.report_outline.sections:
self.task_status[section.name] = {"name": f"Starting Section: {section.name}", "status": "pending"}
yield from self.update_gradio()
ui.system_update("\nGenerating personas for writing sections")
self.personas = call_llm(
instructions=prompts.GENERATE_PERSONAS_INSTRUCTIONS,
model_type='slow',
context={
"topic": self.research_task['topic'],
"report_synopsis": self.report_synopsis,
'type_of_report': self.research_task['report_type'],
'num_personas': 2},
response_model=Perspectives,
logging_fn='generate_personas_instructions'
)
ui.system_update("\nWriting Sections....")
for section in self.report_outline.sections:
self.task_status[section.name]["status"] = "running"
yield from self.update_gradio()
ui.system_sub_update(f"\nWriting Section: {section.name}")
section = yield from self.section_writer(section)
for section in self.report_outline.sections:
print(section.content)
def update_ui(self):
completed_tasks = sum(1 for _, task in self.task_status.items() if task["status"] == "done")
total_tasks = len(self.task_status)
progress_percentage = int((completed_tasks / total_tasks) * 100)
html_output = f"""
<style>
.progress-bar-container {{
width: 100%;
background-color: #f3f3f3;
border-radius: 5px;
overflow: hidden;
margin-bottom: 20px;
}}
.progress-bar {{
height: 20px;
width: {progress_percentage}%;
background-color: #3498db;
transition: width 0.3s;
display: flex;
align-items: center;
justify-content: center;
color: white;
font-weight: bold;
font-size: 12px;
}}
.progress-task {{
display: flex;
align-items: center;
gap: 10px;
font-family: 'Helvetica Neue', Arial, sans-serif;
margin: 5px 0;
font-size: 14px;
font-weight: 500;
color: #333;
}}
.progress-task .task-name {{
flex-grow: 1;
}}
.progress-task .icon {{
width: 20px;
height: 20px;
}}
.loading-circle {{
width: 15px;
height: 15px;
border: 3px solid #ccc;
border-top: 3px solid #3498db;
border-radius: 50%;
animation: spin 1s linear infinite;
}}
@keyframes spin {{
0% {{ transform: rotate(0deg); }}
100% {{ transform: rotate(360deg); }}
}}
.done-icon {{
color: #2ecc71;
font-size: 16px;
}}
.checkbox {{
width: 15px;
height: 15px;
border: 1px solid #ccc;
display: inline-block;
margin-right: 10px;
}}
.milestone {{
display: inline-block;
width: 10px;
height: 10px;
background-color: #ccc;
border-radius: 50%;
margin: 0 5px;
}}
.milestone.completed {{
background-color: #2ecc71;
}}
</style>
<div class='progress-bar-container'>
<div class='progress-bar'>{progress_percentage}%</div>
</div>
<div style='display: flex; justify-content: center; margin-bottom: 20px;'>
{''.join([f"<div class='milestone {'completed' if i < completed_tasks else ''}'></div>" for i in range(total_tasks)])}
</div>
"""
for _, task in self.task_status.items():
if task["status"] == "running":
icon = "<div class='loading-circle'></div>"
elif task["status"] == "done":
icon = "<span class='done-icon'>✓</span>"
else:
icon = "<div class='checkbox'></div>"
html_output += f"<div class='progress-task'><span class='icon'>{icon}</span><span class='task-name'>{task['name']}</span></div>"
return html_output
|