Spaces:
Sleeping
Sleeping
File size: 12,292 Bytes
a27e4e5 7c074f0 a27e4e5 7c074f0 a27e4e5 aeb7261 a27e4e5 aeb7261 a27e4e5 aeb7261 a27e4e5 aeb7261 a27e4e5 7c074f0 a27e4e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
# from fastapi import FastAPI
# from fastapi.middleware.cors import CORSMiddleware
from openai import OpenAI
from google import genai
from crawler import extract_data
import time
import os
from dotenv import load_dotenv
import gradio as gr
# import multiprocessing
from together import Together
load_dotenv("../.env")
print("Environment variables:", os.environ)
together_client = Together(
api_key=os.getenv("TOGETHER_API_KEY"),
)
gemini_client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
genai_model = "gemini-2.0-flash-exp"
perplexity_client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
gpt_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
def get_answers( query: str ):
context = extract_data(query, 1)
return context
# with torch.no_grad():
# model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta')
# tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta', TOKENIZERS_PARALLELISM=True)
# def cal_score(input_data):
# # Initialize model and tokenizer inside the function
# with torch.no_grad():
# inputs = tokenizer(input_data, padding=True, truncation=True, return_tensors="pt")
# outputs = model.get_input_embeddings(inputs["input_ids"])
# a, b = outputs[0], outputs[1] # Adjust based on your model's output structure
# # Normalize the tensors
# a_norm = a / a.norm(dim=1)[:, None]
# b_norm = b / b.norm(dim=1)[:, None]
# print(a.shape, b.shape)
# # Return the similarity score
# # return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
# a_norm = a_norm.reshape(1, -1)
# b_norm = b_norm.reshape(1, -1)
# similarity_score = cosine_similarity(a_norm, b_norm)
# # Return the similarity score (assuming you want the average of the similarities across the tokens)
# return similarity_score # Scalar value
# def get_match_scores( message: str, query: str, answers: list[dict[str, object]] ):
# start = time.time()
# max_processes = 4
# with multiprocessing.Pool(processes=max_processes) as pool:
# scores = pool.map(cal_score, [[answer['questionDetails'], message] for answer in answers])
# print(f"Time taken to compare: {time.time() - start} seconds")
# print("Scores: ", scores)
# return scores
def get_naver_answers( message: str ):
print(">>> Starting naver extraction...")
print("Question: ", message)
naver_start_time = time.time()
response = gemini_client.models.generate_content(
model = genai_model,
contents=f"{message}\n ์์ ๋ด์ฉ์ ์งง์ ์ ๋ชฉ์ผ๋ก ์์ฝํฉ๋๋ค. ์ ๋ชฉ๋ง ๋ณด์ฌ์ฃผ์ธ์. ๋๋ตํ์ง ๋ง์ธ์. ํ๊ตญ์ด๋ก๋ง ๋ต๋ณํด์ฃผ์ธ์!!!",
)
query = response.text
print( "Query: ", query)
context = get_answers( query )
answer_count = 0
sorted_answers = []
for answer in context:
curr = '. '.join(answer['answers'])
answer_count += len(curr)
sorted_answers.append(curr)
if answer_count > 55000:
break
# sorted_answers = ['. '.join(answer['answers']) for answer in context]
naver_end_time = time.time()
print(f"Time taken to extract from Naver: { naver_end_time - naver_start_time } seconds")
document = '\n'.join(sorted_answers)
return document, naver_end_time - naver_start_time
def get_qwen_big_answer( message: str ):
print(">>> Starting Qwen 72B extraction...")
qwen_start_time = time.time()
response = together_client.chat.completions.create(
model="Qwen/Qwen2.5-72B-Instruct-Turbo",
messages=[
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
{"role": "user", "content": message}
]
)
qwen_end_time = time.time()
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
return response.choices[0].message.content, qwen_end_time - qwen_start_time
def get_qwen_small_answer( message: str ):
print(">>> Starting Qwen 7B extraction...")
qwen_start_time = time.time()
response = together_client.chat.completions.create(
model="Qwen/Qwen2.5-7B-Instruct-Turbo",
messages=[
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
{"role": "user", "content": message}
]
#TODO: Change the messages option
)
qwen_end_time = time.time()
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
return response.choices[0].message.content, qwen_end_time - qwen_start_time
def get_llama_small_answer( message: str ):
print(">>> Starting Llama 3.1 8B extraction...")
llama_start_time = time.time()
response = together_client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
messages=[
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
{
"role": "user",
"content": message
}
]
)
llama_end_time = time.time()
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
return response.choices[0].message.content, llama_end_time - llama_start_time
def get_llama_big_answer( message: str ):
print(">>> Starting Llama 3.1 70B extraction...")
llama_start_time = time.time()
response = together_client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
messages=[
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
{
"role": "user",
"content": message
}
]
)
llama_end_time = time.time()
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
return response.choices[0].message.content, llama_end_time - llama_start_time
def get_gemini_answer( message: str ):
print(">>> Starting gemini extraction...")
gemini_start_time = time.time()
response = gemini_client.models.generate_content(
model = genai_model,
contents=message,
)
gemini_end_time = time.time()
print(f"Time taken to extract from Gemini: { gemini_end_time - gemini_start_time } seconds")
return response.candidates[0].content, gemini_end_time - gemini_start_time
# def get_perplexity_answer( message: str ):
# print(">>> Starting perplexity extraction...")
# perplexity_start_time = time.time()
# messages = [
# {
# "role": "system",
# "content": (
# "You are an artificial intelligence assistant and you need to "
# "engage in a helpful, CONCISE, polite question-answer conversation with a user."
# ),
# },
# {
# "role": "user",
# "content": (
# message
# ),
# },
# ]
# response = perplexity_client.chat.completions.create(
# model="llama-3.1-sonar-small-128k-online",
# messages=messages
# )
# perplexity_end_time = time.time()
# print(f"Time taken to extract from Perplexity: { perplexity_end_time - perplexity_start_time } seconds")
# return response.choices[0].message.content, perplexity_end_time - perplexity_start_time
def get_gpt_answer( message: str ):
print(">>> Starting GPT extraction...")
gpt_start_time = time.time()
completion = gpt_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant that gives short answers and nothing extra."},
{
"role": "user",
"content": message
}
]
)
gpt_end_time = time.time()
print(f"Time taken to extract from GPT: { gpt_end_time - gpt_start_time } seconds")
return completion.choices[0].message.content, gpt_end_time - gpt_start_time
def compare_answers(message: str):
methods = [
("Qwen Big (72B)", get_qwen_big_answer),
("Qwen Small (7B)", get_qwen_small_answer),
("Llama Small (8B)", get_llama_small_answer),
("Llama Big (70B)", get_llama_big_answer),
("Gemini-2.0-Flash", get_gemini_answer),
# ("Perplexity", get_perplexity_answer),
("GPT (4o-mini)", get_gpt_answer)
]
results = []
naver_docs, naver_time_taken = get_naver_answers( message )
content = f'์๋ ๋ฌธ์๋ฅผ ๋ฐํ์ผ๋ก ์ง๋ฌธ์ ๋ตํ์ธ์. ๋ต๋ณ์ ํ๊ตญ์ด๋ก๋ง ํด์ฃผ์ธ์ \n ์ง๋ฌธ {message}\n'
content += naver_docs
print("Starting the comparison between summarizers...")
for method_name, method in methods:
answer, time_taken = method(content)
results.append({
"Method": f"Naver + ({method_name})",
"Question": message,
"Answer": answer,
"Time Taken": naver_time_taken + time_taken
})
print("Starting the comparison between extractors/summarizers...")
for method_name, method in methods:
additional_docs, time_taken = method(message)
results.append({
"Method": method_name,
"Question": message,
"Answer": additional_docs,
"Time Taken": time_taken
})
content += f'\n{additional_docs}'
time_taken += naver_time_taken
for summarizer_name, summarizer in methods:
answer, answer_time = summarizer(content)
results.append({
"Method": f"Naver + {method_name} + ({summarizer_name})",
"Question": message,
"Answer": answer,
"Time Taken": time_taken + answer_time
})
return results
def chatFunction( message, history ):
content = f'์๋ ๋ฌธ์๋ฅผ ๋ฐํ์ผ๋ก ์ง๋ฌธ์ ๋ตํ์ธ์. ๋ต๋ณ์์ ์ง๋ฌธ์ ๋ฐ๋ผ ์ถ๋ ฅ ํ์ง ๋ง์ธ์. ๋ต๋ณ์ ํ๊ตญ์ด๋ก๋ง ํด์ฃผ์ธ์! ์ฐพ์ Naver ๋ฌธ์์ ๋ค๋ฅธ ๋ฌธ์์์ ๋ต๋ณ์ด ์๋ ๋ด์ฉ์ ์ ๋ ์ถ๋ ฅํ์ง ๋ง์ธ์ \n ์ง๋ฌธ: {message}\n ๋ฌธ์: '
naver_docs, naver_time_taken = get_naver_answers( message )
start_time = time.time()
content += "\n Naver ๋ฌธ์: " + naver_docs
print( ">>> Length: ", len(naver_docs) )
completion = gpt_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{"role": "system", "content": "You are a helpful assistant that answers only in korean."},
{
"role": "user",
"content": message
}
]
)
gpt_resp = completion.choices[0].message.content
content += "\n ๋ค๋ฅธ ๋ฌธ์: " + gpt_resp
# content += "\n" + gpt_resp
answer, _ = get_qwen_small_answer(content)
print("-"*70)
print("Question: ", message)
print("Answer: ", answer)
time_taken = time.time() - start_time
print("Time taken to summarize: ", time_taken)
return answer
if __name__ == "__main__":
# multiprocessing.set_start_method("fork", force=True)
# if multiprocessing.get_start_method(allow_none=True) is None:
# multiprocessing.set_start_method("fork")
with gr.ChatInterface( fn=chatFunction, type="messages" ) as demo: pass
demo.launch(share=True)
# with open("test_questions.txt", "r") as f:
# if os.path.exists("comparison_results.csv"):
# if input("Do you want to delete the former results? (y/n): ") == "y":
# os.remove("comparison_results.csv")
# questions = f.readlines()
# print(questions)
# for idx, question in enumerate(questions):
# print(" -> Starting the question number: ", idx)
# results = compare_answers(question)
# df = pd.DataFrame(results)
# df.to_csv("comparison_results.csv", mode='a', index=False)
|