Spaces:
Sleeping
Sleeping
Update crawler.py
Browse files- crawler.py +310 -88
crawler.py
CHANGED
@@ -1,98 +1,320 @@
|
|
1 |
-
from
|
2 |
-
import
|
3 |
-
|
4 |
-
from
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
# answers = []
|
13 |
-
# for idx in range(1, 100):
|
14 |
-
# answer = soup.find('div', {'id': f'answer_{idx}'})
|
15 |
-
# if answer:
|
16 |
-
# answers.append(answer)
|
17 |
-
# else:
|
18 |
-
# break
|
19 |
-
answers = soup.find_all('div', {'id': re.compile(r'answer_\d+')})
|
20 |
-
answers = [html2text(str(answer.find('div', {'class': "answerDetail"}).prettify()))
|
21 |
-
for answer in answers if answer.find('div', {'class': "answerDetail"})]
|
22 |
-
title = soup.find('div', {'class': 'endTitleSection'}).text.strip()
|
23 |
-
questionDetails = soup.find('div', {'class': 'questionDetail'}).text.strip()
|
24 |
-
# print("Question: ", questionDetails, '\n')
|
25 |
-
title = title.replace("์ง๋ฌธ", '').strip()
|
26 |
-
print("Answers extracted from: \n", url)
|
27 |
-
print(len(answers))
|
28 |
-
print('-'*60)
|
29 |
-
return {
|
30 |
-
"title": title,
|
31 |
-
"questionDetails": questionDetails,
|
32 |
-
"url": url,
|
33 |
-
"answers": answers
|
34 |
-
}
|
35 |
-
except Exception as e:
|
36 |
-
print(f"Error processing URL {url}: {e}")
|
37 |
-
with open('error_urls.txt', 'w') as f:
|
38 |
-
f.write(url + '\n')
|
39 |
-
return {"title": '', "questionDetails": '', "url": url, "answers": ''}
|
40 |
-
|
41 |
-
def get_answers(results_a_elements, query):
|
42 |
-
"""Fetch answers for all the extracted result links."""
|
43 |
-
if not results_a_elements:
|
44 |
-
print("No results found.")
|
45 |
-
return []
|
46 |
-
|
47 |
-
print("Result links extracted: ", len(results_a_elements))
|
48 |
-
|
49 |
-
# Limit the number of parallel processes for better resource management
|
50 |
-
# max_processes = 4
|
51 |
-
|
52 |
-
# with multiprocessing.Pool(processes=max_processes) as pool:
|
53 |
-
# results = pool.map(process_url, results_a_elements)
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
def get_search_results(query, num_pages):
|
61 |
-
"""Fetch search results for the given query from Naver ์ง์in."""
|
62 |
results = []
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
return results
|
76 |
|
77 |
-
def
|
78 |
-
|
79 |
-
|
80 |
-
print("Total answers collected:", len(answers))
|
81 |
-
return answers
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
|
|
|
|
|
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
|
94 |
-
# AJAX URL:
|
95 |
-
# https://kin.naver.com/ajax/detail/answerList.naver?
|
96 |
-
# dirId=401030201&docId=292159869
|
97 |
-
# &answerSortType=DEFAULT&answerViewType=DETAIL
|
98 |
-
# &answerNo=&page=2&count=5&_=1736131792605
|
|
|
1 |
+
# from fastapi import FastAPI
|
2 |
+
# from fastapi.middleware.cors import CORSMiddleware
|
3 |
+
from openai import OpenAI
|
4 |
+
from google import genai
|
5 |
+
from crawler import extract_data
|
6 |
+
import time
|
7 |
+
import os
|
8 |
+
from dotenv import load_dotenv
|
9 |
+
import gradio as gr
|
10 |
+
# import multiprocessing
|
11 |
+
from together import Together
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
load_dotenv("../.env")
|
14 |
+
# print("Environment variables:", os.environ)
|
15 |
+
|
16 |
+
|
17 |
+
together_client = Together(
|
18 |
+
api_key=os.getenv("TOGETHER_API_KEY"),
|
19 |
+
)
|
20 |
+
|
21 |
+
gemini_client = genai.Client(api_key=os.getenv("GEMINI_API_KEY"))
|
22 |
+
genai_model = "gemini-2.0-flash-exp"
|
23 |
+
|
24 |
+
perplexity_client = OpenAI(api_key=os.getenv("PERPLEXITY_API_KEY"), base_url="https://api.perplexity.ai")
|
25 |
+
gpt_client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def get_answers( query: str ):
|
30 |
+
context = extract_data(query, 1)
|
31 |
+
return context
|
32 |
+
|
33 |
+
# with torch.no_grad():
|
34 |
+
# model = AutoModel.from_pretrained('BM-K/KoSimCSE-roberta')
|
35 |
+
# tokenizer = AutoTokenizer.from_pretrained('BM-K/KoSimCSE-roberta', TOKENIZERS_PARALLELISM=True)
|
36 |
+
|
37 |
+
# def cal_score(input_data):
|
38 |
+
# # Initialize model and tokenizer inside the function
|
39 |
+
# with torch.no_grad():
|
40 |
+
# inputs = tokenizer(input_data, padding=True, truncation=True, return_tensors="pt")
|
41 |
+
# outputs = model.get_input_embeddings(inputs["input_ids"])
|
42 |
+
|
43 |
+
# a, b = outputs[0], outputs[1] # Adjust based on your model's output structure
|
44 |
+
|
45 |
+
# # Normalize the tensors
|
46 |
+
# a_norm = a / a.norm(dim=1)[:, None]
|
47 |
+
# b_norm = b / b.norm(dim=1)[:, None]
|
48 |
+
|
49 |
+
# print(a.shape, b.shape)
|
50 |
+
|
51 |
+
# # Return the similarity score
|
52 |
+
# # return torch.mm(a_norm, b_norm.transpose(0, 1)) * 100
|
53 |
+
# a_norm = a_norm.reshape(1, -1)
|
54 |
+
# b_norm = b_norm.reshape(1, -1)
|
55 |
+
# similarity_score = cosine_similarity(a_norm, b_norm)
|
56 |
+
|
57 |
+
# # Return the similarity score (assuming you want the average of the similarities across the tokens)
|
58 |
+
# return similarity_score # Scalar value
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
# def get_match_scores( message: str, query: str, answers: list[dict[str, object]] ):
|
63 |
+
# start = time.time()
|
64 |
+
# max_processes = 4
|
65 |
+
# with multiprocessing.Pool(processes=max_processes) as pool:
|
66 |
+
# scores = pool.map(cal_score, [[answer['questionDetails'], message] for answer in answers])
|
67 |
+
# print(f"Time taken to compare: {time.time() - start} seconds")
|
68 |
+
# print("Scores: ", scores)
|
69 |
+
# return scores
|
70 |
+
|
71 |
+
def get_naver_answers( message: str ):
|
72 |
+
print(">>> Starting naver extraction...")
|
73 |
+
print("Question: ", message)
|
74 |
+
naver_start_time = time.time()
|
75 |
+
response = gemini_client.models.generate_content(
|
76 |
+
model = genai_model,
|
77 |
+
contents=f"{message}\n ์์ ๋ด์ฉ์ ์งง์ ์ ๋ชฉ์ผ๋ก ์์ฝํฉ๋๋ค. ์ ๋ชฉ๋ง ๋ณด์ฌ์ฃผ์ธ์. ๋๋ตํ์ง ๋ง์ธ์. ํ๊ตญ์ด๋ก๋ง ๋ต๋ณํด์ฃผ์ธ์!!!",
|
78 |
+
)
|
79 |
+
query = response.text
|
80 |
+
print( "Query: ", query)
|
81 |
+
|
82 |
+
context = get_answers( query )
|
83 |
+
|
84 |
+
sorted_answers = ['. '.join(answer['answers']) for answer in context]
|
85 |
+
naver_end_time = time.time()
|
86 |
+
print(f"Time taken to extract from Naver: { naver_end_time - naver_start_time } seconds")
|
87 |
+
document = '\n'.join(sorted_answers)
|
88 |
+
return document, naver_end_time - naver_start_time
|
89 |
+
|
90 |
+
def get_qwen_big_answer( message: str ):
|
91 |
+
print(">>> Starting Qwen 72B extraction...")
|
92 |
+
qwen_start_time = time.time()
|
93 |
+
response = together_client.chat.completions.create(
|
94 |
+
model="Qwen/Qwen2.5-72B-Instruct-Turbo",
|
95 |
+
messages=[
|
96 |
+
{"role": "system", "content": "You are a helpful question-answer, CONCISE conversation assistant that answers in Korean."},
|
97 |
+
{"role": "user", "content": message}
|
98 |
+
]
|
99 |
+
)
|
100 |
+
|
101 |
+
qwen_end_time = time.time()
|
102 |
+
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
103 |
+
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
104 |
+
|
105 |
+
def get_qwen_small_answer( message: str ):
|
106 |
+
print(">>> Starting Qwen 7B extraction...")
|
107 |
+
qwen_start_time = time.time()
|
108 |
+
response = together_client.chat.completions.create(
|
109 |
+
model="Qwen/Qwen2.5-7B-Instruct-Turbo",
|
110 |
+
messages=[
|
111 |
+
{"role": "system", "content": "You are a helpful question-answer, conversation assistant that answers in Korean. Your responses should sound human-like."},
|
112 |
+
{"role": "user", "content": message}
|
113 |
+
],
|
114 |
+
max_tokens = None
|
115 |
+
#TODO: Change the messages option
|
116 |
+
)
|
117 |
+
qwen_end_time = time.time()
|
118 |
+
print(f"Time taken to extract from Qwen: { qwen_end_time - qwen_start_time } seconds")
|
119 |
+
return response.choices[0].message.content, qwen_end_time - qwen_start_time
|
120 |
+
|
121 |
+
def get_llama_small_answer( message: str ):
|
122 |
+
print(">>> Starting Llama 3.1 8B extraction...")
|
123 |
+
llama_start_time = time.time()
|
124 |
+
response = together_client.chat.completions.create(
|
125 |
+
model="meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo",
|
126 |
+
messages=[
|
127 |
+
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
128 |
+
{
|
129 |
+
"role": "user",
|
130 |
+
"content": message
|
131 |
+
}
|
132 |
+
]
|
133 |
+
)
|
134 |
+
llama_end_time = time.time()
|
135 |
+
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
136 |
+
return response.choices[0].message.content, llama_end_time - llama_start_time
|
137 |
+
|
138 |
+
def get_llama_big_answer( message: str ):
|
139 |
+
print(">>> Starting Llama 3.1 70B extraction...")
|
140 |
+
llama_start_time = time.time()
|
141 |
+
response = together_client.chat.completions.create(
|
142 |
+
model="meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo",
|
143 |
+
messages=[
|
144 |
+
{"role": "system", "content": "You are an artificial intelligence assistant and you need to engage in a helpful, CONCISE, polite question-answer conversation with a user."},
|
145 |
+
{
|
146 |
+
"role": "user",
|
147 |
+
"content": message
|
148 |
+
}
|
149 |
+
]
|
150 |
+
)
|
151 |
+
llama_end_time = time.time()
|
152 |
+
print(f"Time taken to extract from Llama: { llama_end_time - llama_start_time } seconds")
|
153 |
+
return response.choices[0].message.content, llama_end_time - llama_start_time
|
154 |
+
|
155 |
+
|
156 |
+
def get_gemini_answer( message: str ):
|
157 |
+
print(">>> Starting gemini extraction...")
|
158 |
+
gemini_start_time = time.time()
|
159 |
+
response = gemini_client.models.generate_content(
|
160 |
+
model = genai_model,
|
161 |
+
contents=message,
|
162 |
+
)
|
163 |
+
gemini_end_time = time.time()
|
164 |
+
print(f"Time taken to extract from Gemini: { gemini_end_time - gemini_start_time } seconds")
|
165 |
+
return response.candidates[0].content, gemini_end_time - gemini_start_time
|
166 |
+
|
167 |
+
# def get_perplexity_answer( message: str ):
|
168 |
+
# print(">>> Starting perplexity extraction...")
|
169 |
+
# perplexity_start_time = time.time()
|
170 |
+
# messages = [
|
171 |
+
# {
|
172 |
+
# "role": "system",
|
173 |
+
# "content": (
|
174 |
+
# "You are an artificial intelligence assistant and you need to "
|
175 |
+
# "engage in a helpful, CONCISE, polite question-answer conversation with a user."
|
176 |
+
# ),
|
177 |
+
# },
|
178 |
+
# {
|
179 |
+
# "role": "user",
|
180 |
+
# "content": (
|
181 |
+
# message
|
182 |
+
# ),
|
183 |
+
# },
|
184 |
+
# ]
|
185 |
+
# response = perplexity_client.chat.completions.create(
|
186 |
+
# model="llama-3.1-sonar-small-128k-online",
|
187 |
+
# messages=messages
|
188 |
+
# )
|
189 |
+
# perplexity_end_time = time.time()
|
190 |
+
# print(f"Time taken to extract from Perplexity: { perplexity_end_time - perplexity_start_time } seconds")
|
191 |
+
# return response.choices[0].message.content, perplexity_end_time - perplexity_start_time
|
192 |
+
|
193 |
+
def get_gpt_answer( message: str ):
|
194 |
+
print(">>> Starting GPT extraction...")
|
195 |
+
gpt_start_time = time.time()
|
196 |
+
completion = gpt_client.chat.completions.create(
|
197 |
+
model="gpt-4o-mini",
|
198 |
+
messages=[
|
199 |
+
{"role": "system", "content": "You are a helpful assistant that gives short answers and nothing extra."},
|
200 |
+
{
|
201 |
+
"role": "user",
|
202 |
+
"content": message
|
203 |
+
}
|
204 |
+
]
|
205 |
+
)
|
206 |
+
gpt_end_time = time.time()
|
207 |
+
print(f"Time taken to extract from GPT: { gpt_end_time - gpt_start_time } seconds")
|
208 |
+
return completion.choices[0].message.content, gpt_end_time - gpt_start_time
|
209 |
+
|
210 |
+
def compare_answers(message: str):
|
211 |
+
methods = [
|
212 |
+
("Qwen Big (72B)", get_qwen_big_answer),
|
213 |
+
("Qwen Small (7B)", get_qwen_small_answer),
|
214 |
+
("Llama Small (8B)", get_llama_small_answer),
|
215 |
+
("Llama Big (70B)", get_llama_big_answer),
|
216 |
+
("Gemini-2.0-Flash", get_gemini_answer),
|
217 |
+
# ("Perplexity", get_perplexity_answer),
|
218 |
+
("GPT (4o-mini)", get_gpt_answer)
|
219 |
+
]
|
220 |
|
|
|
|
|
221 |
results = []
|
222 |
+
|
223 |
+
naver_docs, naver_time_taken = get_naver_answers( message )
|
224 |
+
content = f'์๋ ๋ฌธ์๋ฅผ ๋ฐํ์ผ๋ก ์ง๋ฌธ์ ๋ตํ์ธ์. ๋ต๋ณ์ ํ๊ตญ์ด๋ก๋ง ํด์ฃผ์ธ์ \n ์ง๋ฌธ {message}\n'
|
225 |
+
content += naver_docs
|
226 |
+
print("Starting the comparison between summarizers...")
|
227 |
+
for method_name, method in methods:
|
228 |
+
answer, time_taken = method(content)
|
229 |
+
results.append({
|
230 |
+
"Method": f"Naver + ({method_name})",
|
231 |
+
"Question": message,
|
232 |
+
"Answer": answer,
|
233 |
+
"Time Taken": naver_time_taken + time_taken
|
234 |
+
})
|
235 |
+
|
236 |
+
print("Starting the comparison between extractors/summarizers...")
|
237 |
+
for method_name, method in methods:
|
238 |
+
additional_docs, time_taken = method(message)
|
239 |
+
results.append({
|
240 |
+
"Method": method_name,
|
241 |
+
"Question": message,
|
242 |
+
"Answer": additional_docs,
|
243 |
+
"Time Taken": time_taken
|
244 |
+
})
|
245 |
+
content += f'\n{additional_docs}'
|
246 |
+
time_taken += naver_time_taken
|
247 |
+
for summarizer_name, summarizer in methods:
|
248 |
+
answer, answer_time = summarizer(content)
|
249 |
+
results.append({
|
250 |
+
"Method": f"Naver + {method_name} + ({summarizer_name})",
|
251 |
+
"Question": message,
|
252 |
+
"Answer": answer,
|
253 |
+
"Time Taken": time_taken + answer_time
|
254 |
+
})
|
255 |
return results
|
256 |
|
257 |
+
def chatFunction( message, history ):
|
258 |
+
content = f'์๋ ๋ฌธ์๋ฅผ ๋ฐํ์ผ๋ก ์ง๋ฌธ์ ๋ตํ์ธ์. ๋ต๋ณ์์ ์ง๋ฌธ์ ๋ฐ๋ผ ์ถ๋ ฅ ํ์ง ๋ง์ธ์. ๋ต๋ณ์ ํ๊ตญ์ด๋ก๋ง ํด์ฃผ์ธ์! ์ฐพ์ Naver ๋ฌธ์์ ๋ค๋ฅธ ๋ฌธ์์์ ๋ต๋ณ์ด ์๋ ๋ด์ฉ์ ์ ๋ ์ถ๋ ฅํ์ง ๋ง์ธ์. ์น์ ํ๊ณ ์ธ๊ฐ๋ต๊ฒ ๋งํ์ธ์. \n ์ง๋ฌธ: {message}\n ๋ฌธ์: '
|
259 |
+
naver_docs, naver_time_taken = get_naver_answers( message )
|
|
|
|
|
260 |
|
261 |
+
if len(naver_docs) > 55000:
|
262 |
+
overlap = 200
|
263 |
+
answers = []
|
264 |
+
split_len = len(naver_docs) // ( ( len(naver_docs) - 55000 ) // 55000 + 2 ) + 1
|
265 |
+
for i in range( len(naver_docs), split_len ):
|
266 |
+
if i == 0:
|
267 |
+
split = naver_docs[:split_len]
|
268 |
+
else:
|
269 |
+
split = naver_docs[i * split_len - overlap: (i + 1) * split_len]
|
270 |
+
answer, _ = get_qwen_small_answer(f"Summarize important points in a paragraph, given the information below, using only Korean language. Give me only the summary!!! \n {split}")
|
271 |
+
answers.append(answer)
|
272 |
+
naver_docs = '\n'.join(answers)
|
273 |
|
274 |
+
start_time = time.time()
|
275 |
+
content += "\n Naver ๋ฌธ์: " + naver_docs
|
276 |
+
|
277 |
+
completion = gpt_client.chat.completions.create(
|
278 |
+
model="gpt-4o-mini",
|
279 |
+
messages=[
|
280 |
+
{"role": "system", "content": "You are a helpful assistant that gives detailed answers only in korean."},
|
281 |
+
{
|
282 |
+
"role": "user",
|
283 |
+
"content": message
|
284 |
+
}
|
285 |
+
]
|
286 |
+
)
|
287 |
+
gpt_resp = completion.choices[0].message.content
|
288 |
+
content += "\n ๋ค๋ฅธ ๋ฌธ์: " + gpt_resp
|
289 |
+
|
290 |
+
# content += "\n" + gpt_resp
|
291 |
+
|
292 |
+
answer, _ = get_qwen_small_answer(content)
|
293 |
+
|
294 |
+
print("-"*70)
|
295 |
+
print("Question: ", message)
|
296 |
+
print("Answer: ", answer)
|
297 |
+
time_taken = time.time() - start_time
|
298 |
+
print("Time taken to summarize: ", time_taken)
|
299 |
+
return answer
|
300 |
+
|
301 |
|
302 |
+
if __name__ == "__main__":
|
303 |
+
# multiprocessing.set_start_method("fork", force=True)
|
304 |
+
# if multiprocessing.get_start_method(allow_none=True) is None:
|
305 |
+
# multiprocessing.set_start_method("fork")
|
306 |
+
with gr.ChatInterface( fn=chatFunction, type="messages" ) as demo: pass
|
307 |
+
demo.launch(share=True)
|
308 |
+
# with open("test_questions.txt", "r") as f:
|
309 |
+
# if os.path.exists("comparison_results.csv"):
|
310 |
+
# if input("Do you want to delete the former results? (y/n): ") == "y":
|
311 |
+
# os.remove("comparison_results.csv")
|
312 |
+
# questions = f.readlines()
|
313 |
+
# print(questions)
|
314 |
+
# for idx, question in enumerate(questions):
|
315 |
+
# print(" -> Starting the question number: ", idx)
|
316 |
+
# results = compare_answers(question)
|
317 |
+
# df = pd.DataFrame(results)
|
318 |
+
# df.to_csv("comparison_results.csv", mode='a', index=False)
|
319 |
|
320 |
|
|
|
|
|
|
|
|
|
|