Upload 2 files
Browse files- requirements.txt +5 -1
- train.py +365 -0
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
gradio
|
3 |
+
tiktoken
|
4 |
+
numpy
|
5 |
+
huggingface-hub
|
train.py
ADDED
@@ -0,0 +1,365 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
import time
|
4 |
+
import inspect
|
5 |
+
from dataclasses import dataclass
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import tiktoken
|
10 |
+
import numpy as np
|
11 |
+
from huggingface_hub import HfApi, Repository
|
12 |
+
import gradio as gr
|
13 |
+
from tqdm import tqdm
|
14 |
+
|
15 |
+
|
16 |
+
class CausalSelfAttention(nn.Module):
|
17 |
+
|
18 |
+
def __init__(self, config):
|
19 |
+
super().__init__()
|
20 |
+
assert config.n_embd % config.n_head == 0
|
21 |
+
# key, query, value projections for all heads, but in a batch
|
22 |
+
self.c_attn = nn.Linear(config.n_embd, 3 * config.n_embd)
|
23 |
+
# output projection
|
24 |
+
self.c_proj = nn.Linear(config.n_embd, config.n_embd)
|
25 |
+
self.c_proj.NANGPT_SCALE_INIT = 1
|
26 |
+
# regularization
|
27 |
+
self.n_head = config.n_head
|
28 |
+
self.n_embd = config.n_embd
|
29 |
+
self.register_buffer("bias", torch.tril(torch.ones(config.block_size, config.block_size)).view(1, 1, config.block_size, config.block_size))
|
30 |
+
|
31 |
+
def forward(self, x):
|
32 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
33 |
+
# calculate query, key, values for all heads in batch and move head forward to be the batch dim
|
34 |
+
# nh is "number of heads", hs is "head size", and C (number of channels) = nh * hs
|
35 |
+
# e.g. in GPT-2 (124M), n_head=12, hs=64, so nh*hs=C=768 channels in the Transformer
|
36 |
+
qkv = self.c_attn(x)
|
37 |
+
q, k, v = qkv.split(self.n_embd, dim=2)
|
38 |
+
k = k.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
39 |
+
q = q.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
40 |
+
v = v.view(B, T, self.n_head, C // self.n_head).transpose(1, 2) # (B, nh, T, hs)
|
41 |
+
|
42 |
+
att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
|
43 |
+
att = att.masked_fill(self.bias[:, :, :T, :T] == 0, float('-inf'))
|
44 |
+
att = F.softmax(att, dim=-1)
|
45 |
+
y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)
|
46 |
+
|
47 |
+
y = y.transpose(1, 2).contiguous().view(B, T, C) # re-assemble all head outputs side by side
|
48 |
+
# output projection
|
49 |
+
y = self.c_proj(y)
|
50 |
+
return y
|
51 |
+
|
52 |
+
|
53 |
+
class MLP(nn.Module):
|
54 |
+
|
55 |
+
def __init__(self, config):
|
56 |
+
super().__init__()
|
57 |
+
self.c_fc = nn.Linear(config.n_embd, 4 * config.n_embd)
|
58 |
+
self.gelu = nn.GELU(approximate='tanh')
|
59 |
+
self.c_proj = nn.Linear(4 * config.n_embd, config.n_embd)
|
60 |
+
self.c_proj.NANOGPT_SCALE_INIT = 1
|
61 |
+
|
62 |
+
def forward(self, x):
|
63 |
+
x = self.c_fc(x)
|
64 |
+
x = self.gelu(x)
|
65 |
+
x = self.c_proj(x)
|
66 |
+
return x
|
67 |
+
|
68 |
+
class Block(nn.Module):
|
69 |
+
|
70 |
+
def __init__(self, config):
|
71 |
+
super().__init__()
|
72 |
+
self.ln_1 = nn.LayerNorm(config.n_embd)
|
73 |
+
self.attn = CausalSelfAttention(config)
|
74 |
+
self.ln_2 = nn.LayerNorm(config.n_embd)
|
75 |
+
self.mlp = MLP(config)
|
76 |
+
|
77 |
+
def forward(self, x):
|
78 |
+
x = x + self.attn(self.ln_1(x))
|
79 |
+
x = x + self.mlp(self.ln_2(x))
|
80 |
+
return x
|
81 |
+
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class GPTConfig:
|
85 |
+
block_size: int = 1024 # max sequence length
|
86 |
+
vocab_size: int = 50257 # number of tokens: 50,000 BPE merges + 256 bytes tokens + 1 <|endoftext|> token
|
87 |
+
n_layer: int = 12 # number of layers
|
88 |
+
n_head: int = 12 # number of heads
|
89 |
+
n_embd: int = 768 # embedding dimension
|
90 |
+
|
91 |
+
|
92 |
+
class GPT(nn.Module):
|
93 |
+
|
94 |
+
def __init__(self, config):
|
95 |
+
super().__init__()
|
96 |
+
self.config = config
|
97 |
+
|
98 |
+
self.transformer = nn.ModuleDict(dict(
|
99 |
+
wte = nn.Embedding(config.vocab_size, config.n_embd),
|
100 |
+
wpe = nn.Embedding(config.block_size, config.n_embd),
|
101 |
+
h = nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
|
102 |
+
ln_f = nn.LayerNorm(config.n_embd),
|
103 |
+
))
|
104 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
105 |
+
|
106 |
+
# weight sharing
|
107 |
+
self.transformer.wte.weight = self.lm_head.weight
|
108 |
+
|
109 |
+
# weight initialization
|
110 |
+
self.apply(self._init_weights)
|
111 |
+
|
112 |
+
def generate(self, idx, max_new_tokens):
|
113 |
+
# idx is (B, T) array of indices in the current context
|
114 |
+
for _ in range(max_new_tokens):
|
115 |
+
# crop idx to the last block_size tokens
|
116 |
+
idx_cond = idx[:, -self.config.block_size:]
|
117 |
+
# get the predictions
|
118 |
+
logits, loss = self(idx_cond)
|
119 |
+
# focus only on the last time step
|
120 |
+
logits = logits[:, -1, :] # becomes (B, C)
|
121 |
+
# apply softmax to get probabilities
|
122 |
+
probs = F.softmax(logits, dim=-1) # (B, C)
|
123 |
+
# sample from the distribution
|
124 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
125 |
+
# append sampled index to the running sequence
|
126 |
+
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
127 |
+
return idx
|
128 |
+
|
129 |
+
def _init_weights(self, module):
|
130 |
+
if isinstance(module, nn.Linear):
|
131 |
+
std = 0.02
|
132 |
+
if hasattr(module, 'NANGPT_SCALE_INIT'):
|
133 |
+
std *= (2 * self.config.n_layer) ** -0.5
|
134 |
+
torch.nn.init.normal_(module.weight, mean = 0.0, std = std)
|
135 |
+
if module.bias is not None:
|
136 |
+
torch.nn.init.zeros_(module.bias)
|
137 |
+
elif isinstance(module, nn.Embedding):
|
138 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std = 0.02)
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
def forward(self, idx, targets=None):
|
143 |
+
# idx is of shape (B, T)
|
144 |
+
B, T = idx.size()
|
145 |
+
assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, block size is only {self.config.block_size}"
|
146 |
+
# forward the token and posisition embeddings
|
147 |
+
pos = torch.arange(0, T, dtype=torch.long, device=idx.device) # shape (T)
|
148 |
+
pos_emb = self.transformer.wpe(pos) # position embeddings of shape (T, n_embd)
|
149 |
+
tok_emb = self.transformer.wte(idx) # token embeddings of shape (B, T, n_embd)
|
150 |
+
x = tok_emb + pos_emb
|
151 |
+
# forward the blocks of the transformer
|
152 |
+
for block in self.transformer.h:
|
153 |
+
x = block(x)
|
154 |
+
# forward the final layernorm and the classifier
|
155 |
+
x = self.transformer.ln_f(x)
|
156 |
+
logits = self.lm_head(x) # (B, T, vocab_size)
|
157 |
+
loss = None
|
158 |
+
if targets is not None:
|
159 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
160 |
+
return logits, loss
|
161 |
+
|
162 |
+
@classmethod
|
163 |
+
def from_pretrained(cls, model_type):
|
164 |
+
"""Loads pretrained GPT-2 model weights from huggingface"""
|
165 |
+
assert model_type in {'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
|
166 |
+
from transformers import GPT2LMHeadModel
|
167 |
+
print("loading weights from pretrained gpt: %s" % model_type)
|
168 |
+
|
169 |
+
# n_layer, n_head and n_embd are determined from model_type
|
170 |
+
config_args = {
|
171 |
+
'gpt2': dict(n_layer=12, n_head=12, n_embd=768), # 124M params
|
172 |
+
'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024), # 350M params
|
173 |
+
'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280), # 774M params
|
174 |
+
'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600), # 1558M params
|
175 |
+
}[model_type]
|
176 |
+
config_args['vocab_size'] = 50257 # always 50257 for GPT model checkpoints
|
177 |
+
config_args['block_size'] = 1024 # always 1024 for GPT model checkpoints
|
178 |
+
# create a from-scratch initialized minGPT model
|
179 |
+
config = GPTConfig(**config_args)
|
180 |
+
model = GPT(config)
|
181 |
+
sd = model.state_dict()
|
182 |
+
sd_keys = sd.keys()
|
183 |
+
sd_keys = [k for k in sd_keys if not k.endswith('.attn.bias')] # discard this mask / buffer, not a param
|
184 |
+
|
185 |
+
# init a huggingface/transformers model
|
186 |
+
model_hf = GPT2LMHeadModel.from_pretrained(model_type)
|
187 |
+
sd_hf = model_hf.state_dict()
|
188 |
+
|
189 |
+
# copy while ensuring all of the parameters are aligned and match in names and shapes
|
190 |
+
sd_keys_hf = sd_hf.keys()
|
191 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.masked_bias')] # ignore these, just a buffer
|
192 |
+
sd_keys_hf = [k for k in sd_keys_hf if not k.endswith('.attn.bias')] # same, just the mask (buffer)
|
193 |
+
transposed = ['attn.c_attn.weight', 'attn.c_proj.weight', 'mlp.c_fc.weight', 'mlp.c_proj.weight']
|
194 |
+
# basically the openai checkpoints use a "Conv1D" module, but we only want to use a vanilla Linear
|
195 |
+
# this means that we have to transpose these weights when we import them
|
196 |
+
assert len(sd_keys_hf) == len(sd_keys), f"mismatched keys: {len(sd_keys_hf)} != {len(sd_keys)}"
|
197 |
+
for k in sd_keys_hf:
|
198 |
+
if any(k.endswith(w) for w in transposed):
|
199 |
+
# special treatment for the Conv1D weights we need to transpose
|
200 |
+
assert sd_hf[k].shape[::-1] == sd[k].shape
|
201 |
+
with torch.no_grad():
|
202 |
+
sd[k].copy_(sd_hf[k].t())
|
203 |
+
else:
|
204 |
+
# vanilla copy over the other parameters
|
205 |
+
assert sd_hf[k].shape == sd[k].shape
|
206 |
+
with torch.no_grad():
|
207 |
+
sd[k].copy_(sd_hf[k])
|
208 |
+
|
209 |
+
return model
|
210 |
+
|
211 |
+
# model = GPT.from_pretrained('gpt2')
|
212 |
+
|
213 |
+
device = 'cpu'
|
214 |
+
if torch.cuda.is_available():
|
215 |
+
device = 'cuda'
|
216 |
+
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
|
217 |
+
device = "mps"
|
218 |
+
print(f"using device: {device}")
|
219 |
+
|
220 |
+
# SEED
|
221 |
+
torch.manual_seed(1337)
|
222 |
+
if torch.cuda.is_available():
|
223 |
+
torch.cuda.manual_seed(1337)
|
224 |
+
|
225 |
+
# STOP
|
226 |
+
num_return_sequences = 5
|
227 |
+
max_length = 30
|
228 |
+
|
229 |
+
|
230 |
+
class DataLoaderLite:
|
231 |
+
def __init__(self, B, T):
|
232 |
+
self.B = B
|
233 |
+
self.T = T
|
234 |
+
|
235 |
+
# at init load tokens from disk and store them in memory
|
236 |
+
with open('/content/drive/My Drive/ERAV3/Assign12/input.txt', 'r') as f:
|
237 |
+
text = f.read()
|
238 |
+
enc = tiktoken.get_encoding('gpt2')
|
239 |
+
tokens = enc.encode(text)
|
240 |
+
self.tokens = torch.tensor(tokens)
|
241 |
+
print(f'loaded {len(self.tokens)} tokens')
|
242 |
+
print(f'1 epoch = {len(self.tokens) // (B * T)} batches')
|
243 |
+
|
244 |
+
# state
|
245 |
+
self.current_position = 0
|
246 |
+
|
247 |
+
def next_batch(self):
|
248 |
+
B, T = self.B, self.T
|
249 |
+
buf = self.tokens[self.current_position: self.current_position + B * T + 1]
|
250 |
+
x = (buf[:-1]).view(B, T) # inputs
|
251 |
+
y = (buf[1:]).view(B, T) # targets
|
252 |
+
# advance the position in the tensor
|
253 |
+
self.current_position += B*T
|
254 |
+
# if loading the next batch would be out of bounds, reset
|
255 |
+
if self.current_position + (B * T + 1) > len(self.tokens):
|
256 |
+
self.current_position = 0
|
257 |
+
return x, y
|
258 |
+
|
259 |
+
|
260 |
+
model = GPT(GPTConfig())
|
261 |
+
model.to(device)
|
262 |
+
|
263 |
+
train_loader = DataLoaderLite(B = 4, T = 32)
|
264 |
+
|
265 |
+
# Calculate number of epochs
|
266 |
+
total_tokens = len(train_loader.tokens)
|
267 |
+
batches_per_epoch = total_tokens // (4 * 32)
|
268 |
+
total_epochs = 5000 / batches_per_epoch
|
269 |
+
print(f'\nTraining for approximately {total_epochs:.2f} epochs')
|
270 |
+
print(f'Total tokens: {total_tokens:,}')
|
271 |
+
print(f'Batches per epoch: {batches_per_epoch}')
|
272 |
+
print(f'Total steps: 5,000\n')
|
273 |
+
|
274 |
+
# Continue with training loop
|
275 |
+
optimizer = torch.optim.AdamW(model.parameters(), lr = 3e-4)
|
276 |
+
|
277 |
+
# Calculate total epochs and steps per epoch
|
278 |
+
total_steps = 5000
|
279 |
+
steps_per_epoch = batches_per_epoch
|
280 |
+
num_epochs = total_steps // steps_per_epoch
|
281 |
+
remaining_steps = total_steps % steps_per_epoch
|
282 |
+
|
283 |
+
print(f"Training for {num_epochs} full epochs plus {remaining_steps} steps")
|
284 |
+
print(f"Steps per epoch: {steps_per_epoch}\n")
|
285 |
+
|
286 |
+
step = 0
|
287 |
+
for epoch in range(num_epochs + 1):
|
288 |
+
# Determine steps for this epoch
|
289 |
+
if epoch == num_epochs:
|
290 |
+
if remaining_steps == 0:
|
291 |
+
break
|
292 |
+
current_steps = remaining_steps
|
293 |
+
else:
|
294 |
+
current_steps = steps_per_epoch
|
295 |
+
|
296 |
+
print(f"\nEpoch {epoch+1}/{num_epochs + (1 if remaining_steps > 0 else 0)}")
|
297 |
+
epoch_loss = 0
|
298 |
+
|
299 |
+
# Use tqdm for progress bar
|
300 |
+
pbar = tqdm(range(current_steps), desc=f'Training',
|
301 |
+
leave=True, ncols=100)
|
302 |
+
|
303 |
+
for i in pbar:
|
304 |
+
x, y = train_loader.next_batch()
|
305 |
+
x, y = x.to(device), y.to(device)
|
306 |
+
|
307 |
+
optimizer.zero_grad()
|
308 |
+
logits, loss = model(x, y)
|
309 |
+
loss.backward()
|
310 |
+
optimizer.step()
|
311 |
+
|
312 |
+
epoch_loss += loss.item()
|
313 |
+
step += 1
|
314 |
+
|
315 |
+
# Update progress bar description with current loss
|
316 |
+
pbar.set_description(f'Loss: {loss.item():.4f}')
|
317 |
+
|
318 |
+
# Print epoch summary
|
319 |
+
avg_epoch_loss = epoch_loss / current_steps
|
320 |
+
print(f'\nEpoch {epoch+1} completed. Average Loss: {avg_epoch_loss:.4f}')
|
321 |
+
print(f'Total steps completed: {step}/{total_steps}')
|
322 |
+
|
323 |
+
# For even smaller file size, quantize the model to 8-bit
|
324 |
+
model_save_path = '/content/drive/My Drive/ERAV3/Assign12/gpt_model_quantized.pt'
|
325 |
+
try:
|
326 |
+
# Quantize weights to 8-bit
|
327 |
+
state_dict = model.state_dict()
|
328 |
+
quantized_dict = {}
|
329 |
+
|
330 |
+
for key, param in state_dict.items():
|
331 |
+
if param.dtype == torch.float32 or param.dtype == torch.float16:
|
332 |
+
# Quantize to 8-bit
|
333 |
+
param_np = param.cpu().numpy()
|
334 |
+
scale = np.max(np.abs(param_np)) / 127
|
335 |
+
quantized = np.round(param_np / scale).astype(np.int8)
|
336 |
+
quantized_dict[key] = {
|
337 |
+
'data': quantized,
|
338 |
+
'scale': scale
|
339 |
+
}
|
340 |
+
else:
|
341 |
+
quantized_dict[key] = param
|
342 |
+
|
343 |
+
# Save quantized weights
|
344 |
+
torch.save(quantized_dict, model_save_path)
|
345 |
+
print(f'\nQuantized model saved successfully to {model_save_path}')
|
346 |
+
except Exception as e:
|
347 |
+
print(f'\nError saving model: {e}')
|
348 |
+
|
349 |
+
# To load the quantized model:
|
350 |
+
# def dequantize_model(model, quantized_dict):
|
351 |
+
# state_dict = {}
|
352 |
+
# for key, value in quantized_dict.items():
|
353 |
+
# if isinstance(value, dict):
|
354 |
+
# # Dequantize
|
355 |
+
# state_dict[key] = torch.tensor(
|
356 |
+
# value['data'].astype(np.float32) * value['scale']
|
357 |
+
# )
|
358 |
+
# else:
|
359 |
+
# state_dict[key] = value
|
360 |
+
# model.load_state_dict(state_dict)
|
361 |
+
# return model
|
362 |
+
|
363 |
+
context = torch.zeros((1, 1), dtype=torch.long, device=device)
|
364 |
+
enc = tiktoken.get_encoding('gpt2')
|
365 |
+
print(enc.decode(model.generate(context, max_new_tokens=500)[0].tolist()))
|