File size: 6,810 Bytes
c3fe4b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import math
from dataclasses import dataclass
import torch
import torch.nn as nn
from torch.nn import functional as F
class LlamaRMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.eps = eps
def forward(self, x):
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
x_norm = x / rms
return self.weight * x_norm
class LlamaRotaryEmbedding(nn.Module):
def __init__(self, dim, max_position_embeddings=2048, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq)
self.max_position_embeddings = max_position_embeddings
self.dim = dim
def forward(self, x, seq_len):
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
emb = torch.cat((freqs, freqs), dim=-1)
return emb
def rotate_half(x):
x1, x2 = x[..., :x.shape[-1]//2], x[..., x.shape[-1]//2:]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
cos = cos.unsqueeze(0).unsqueeze(0)
sin = sin.unsqueeze(0).unsqueeze(0)
cos = cos.expand(q.shape[0], q.shape[1], -1, -1)
sin = sin.expand(k.shape[0], k.shape[1], -1, -1)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class LlamaSdpaAttention(nn.Module):
def __init__(self, config):
super().__init__()
self.hidden_size = config.n_embd
self.num_heads = config.n_head
self.head_dim = config.n_embd // config.n_head
self.num_key_value_heads = config.n_head // 3
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
def forward(self, x, attention_mask=None):
B, T, C = x.size()
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim)
k = self.k_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
v = self.v_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
k = k.repeat_interleave(self.num_key_value_groups, dim=2)
v = v.repeat_interleave(self.num_key_value_groups, dim=2)
q = q.transpose(1, 2)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
rotary_emb = self.rotary_emb(x, T)
cos, sin = rotary_emb.cos(), rotary_emb.sin()
q, k = apply_rotary_pos_emb(q, k, cos, sin, None)
out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
out = out.transpose(1, 2).contiguous().view(B, T, C)
return self.o_proj(out)
class LlamaMLP(nn.Module):
def __init__(self, config):
super().__init__()
self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.act_fn = nn.SiLU()
def forward(self, x):
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class LlamaDecoderLayer(nn.Module):
def __init__(self, config):
super().__init__()
self.input_layernorm = LlamaRMSNorm(config.n_embd)
self.self_attn = LlamaSdpaAttention(config)
self.post_attention_layernorm = LlamaRMSNorm(config.n_embd)
self.mlp = LlamaMLP(config)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = residual + x
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = residual + x
return x
@dataclass
class SmolLM2Config:
block_size: int = 2048
vocab_size: int = 49152
n_layer: int = 30
n_head: int = 9
n_embd: int = 576
intermediate_size: int = 1536
num_key_value_heads: int = 3
rms_norm_eps: float = 1e-5
rope_theta: float = 10000.0
initializer_range: float = 0.041666666666666664
use_cache: bool = True
class SmolLM2(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
self.norm = LlamaRMSNorm(config.n_embd, eps=config.rms_norm_eps)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
self.embed_tokens.weight = self.lm_head.weight
self.apply(self._init_weights)
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
def forward(self, idx, targets=None):
B, T = idx.size()
x = self.embed_tokens(idx)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
return logits, loss
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
for _ in range(max_new_tokens):
idx_cond = idx[:, -self.config.block_size:]
logits, _ = self(idx_cond)
logits = logits[:, -1, :] / temperature
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = float('-inf')
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat((idx, idx_next), dim=1)
return idx |