Upload 3 files
Browse files
app.py
CHANGED
|
@@ -1,28 +1,199 @@
|
|
| 1 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from transformers import AutoTokenizer
|
| 3 |
-
from model import SmolLM2, SmolLM2Config
|
| 4 |
import gradio as gr
|
| 5 |
import zipfile
|
| 6 |
import io
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
# Initialize model and tokenizer
|
| 9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 10 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
| 11 |
model = SmolLM2(SmolLM2Config())
|
| 12 |
|
| 13 |
# Load trained weights
|
| 14 |
-
|
| 15 |
-
checkpoint = torch.load('checkpoint_step_5000.pt', map_location=device) # Adjust path as needed
|
| 16 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 17 |
model.to(device)
|
| 18 |
model.eval()
|
| 19 |
|
| 20 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
| 21 |
"""Generate text from a prompt"""
|
| 22 |
-
# Tokenize the prompt
|
| 23 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 24 |
|
| 25 |
-
# Generate
|
| 26 |
with torch.no_grad():
|
| 27 |
output_ids = model.generate(
|
| 28 |
input_ids,
|
|
@@ -31,9 +202,7 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
| 31 |
top_k=top_k
|
| 32 |
)
|
| 33 |
|
| 34 |
-
|
| 35 |
-
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
| 36 |
-
return generated_text
|
| 37 |
|
| 38 |
# Gradio interface
|
| 39 |
def gradio_interface(prompt, max_length, temperature, top_k):
|
|
@@ -52,8 +221,5 @@ iface = gr.Interface(
|
|
| 52 |
description="Generate text using the SmolLM2 model"
|
| 53 |
)
|
| 54 |
|
| 55 |
-
# For Hugging Face deployment
|
| 56 |
-
app = gr.mount_gradio_app(app, iface)
|
| 57 |
-
|
| 58 |
if __name__ == "__main__":
|
| 59 |
iface.launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch.nn import functional as F
|
| 4 |
+
import math
|
| 5 |
+
from dataclasses import dataclass
|
| 6 |
from transformers import AutoTokenizer
|
|
|
|
| 7 |
import gradio as gr
|
| 8 |
import zipfile
|
| 9 |
import io
|
| 10 |
|
| 11 |
+
# Copy all model classes here
|
| 12 |
+
class LlamaRMSNorm(nn.Module):
|
| 13 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 14 |
+
super().__init__()
|
| 15 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 16 |
+
self.eps = eps
|
| 17 |
+
|
| 18 |
+
def forward(self, x):
|
| 19 |
+
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
| 20 |
+
x_norm = x / rms
|
| 21 |
+
return self.weight * x_norm
|
| 22 |
+
|
| 23 |
+
class LlamaRotaryEmbedding(nn.Module):
|
| 24 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000):
|
| 25 |
+
super().__init__()
|
| 26 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
| 27 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 28 |
+
self.max_position_embeddings = max_position_embeddings
|
| 29 |
+
self.dim = dim
|
| 30 |
+
|
| 31 |
+
def forward(self, x, seq_len):
|
| 32 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
| 33 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 34 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 35 |
+
return emb
|
| 36 |
+
|
| 37 |
+
def rotate_half(x):
|
| 38 |
+
x1, x2 = x[..., :x.shape[-1]//2], x[..., x.shape[-1]//2:]
|
| 39 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 40 |
+
|
| 41 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
| 42 |
+
cos = cos.unsqueeze(0).unsqueeze(0)
|
| 43 |
+
sin = sin.unsqueeze(0).unsqueeze(0)
|
| 44 |
+
cos = cos.expand(q.shape[0], q.shape[1], -1, -1)
|
| 45 |
+
sin = sin.expand(k.shape[0], k.shape[1], -1, -1)
|
| 46 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 47 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 48 |
+
return q_embed, k_embed
|
| 49 |
+
|
| 50 |
+
class LlamaSdpaAttention(nn.Module):
|
| 51 |
+
def __init__(self, config):
|
| 52 |
+
super().__init__()
|
| 53 |
+
self.hidden_size = config.n_embd
|
| 54 |
+
self.num_heads = config.n_head
|
| 55 |
+
self.head_dim = config.n_embd // config.n_head
|
| 56 |
+
self.num_key_value_heads = config.n_head // 3
|
| 57 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
| 58 |
+
|
| 59 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
| 60 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 61 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
| 62 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 63 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
|
| 64 |
+
|
| 65 |
+
def forward(self, x, attention_mask=None):
|
| 66 |
+
B, T, C = x.size()
|
| 67 |
+
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim)
|
| 68 |
+
k = self.k_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
|
| 69 |
+
v = self.v_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
|
| 70 |
+
|
| 71 |
+
k = k.repeat_interleave(self.num_key_value_groups, dim=2)
|
| 72 |
+
v = v.repeat_interleave(self.num_key_value_groups, dim=2)
|
| 73 |
+
|
| 74 |
+
q = q.transpose(1, 2)
|
| 75 |
+
k = k.transpose(1, 2)
|
| 76 |
+
v = v.transpose(1, 2)
|
| 77 |
+
|
| 78 |
+
rotary_emb = self.rotary_emb(x, T)
|
| 79 |
+
cos, sin = rotary_emb.cos(), rotary_emb.sin()
|
| 80 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, None)
|
| 81 |
+
|
| 82 |
+
out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
| 83 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
| 84 |
+
return self.o_proj(out)
|
| 85 |
+
|
| 86 |
+
class LlamaMLP(nn.Module):
|
| 87 |
+
def __init__(self, config):
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
|
| 90 |
+
self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
|
| 91 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=False)
|
| 92 |
+
self.act_fn = nn.SiLU()
|
| 93 |
+
|
| 94 |
+
def forward(self, x):
|
| 95 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 96 |
+
|
| 97 |
+
class LlamaDecoderLayer(nn.Module):
|
| 98 |
+
def __init__(self, config):
|
| 99 |
+
super().__init__()
|
| 100 |
+
self.input_layernorm = LlamaRMSNorm(config.n_embd)
|
| 101 |
+
self.self_attn = LlamaSdpaAttention(config)
|
| 102 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.n_embd)
|
| 103 |
+
self.mlp = LlamaMLP(config)
|
| 104 |
+
|
| 105 |
+
def forward(self, x):
|
| 106 |
+
residual = x
|
| 107 |
+
x = self.input_layernorm(x)
|
| 108 |
+
x = self.self_attn(x)
|
| 109 |
+
x = residual + x
|
| 110 |
+
|
| 111 |
+
residual = x
|
| 112 |
+
x = self.post_attention_layernorm(x)
|
| 113 |
+
x = self.mlp(x)
|
| 114 |
+
x = residual + x
|
| 115 |
+
return x
|
| 116 |
+
|
| 117 |
+
@dataclass
|
| 118 |
+
class SmolLM2Config:
|
| 119 |
+
block_size: int = 2048
|
| 120 |
+
vocab_size: int = 49152
|
| 121 |
+
n_layer: int = 30
|
| 122 |
+
n_head: int = 9
|
| 123 |
+
n_embd: int = 576
|
| 124 |
+
intermediate_size: int = 1536
|
| 125 |
+
num_key_value_heads: int = 3
|
| 126 |
+
rms_norm_eps: float = 1e-5
|
| 127 |
+
rope_theta: float = 10000.0
|
| 128 |
+
initializer_range: float = 0.041666666666666664
|
| 129 |
+
use_cache: bool = True
|
| 130 |
+
|
| 131 |
+
class SmolLM2(nn.Module):
|
| 132 |
+
def __init__(self, config):
|
| 133 |
+
super().__init__()
|
| 134 |
+
self.config = config
|
| 135 |
+
|
| 136 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
| 137 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
|
| 138 |
+
self.norm = LlamaRMSNorm(config.n_embd, eps=config.rms_norm_eps)
|
| 139 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 140 |
+
self.embed_tokens.weight = self.lm_head.weight
|
| 141 |
+
self.apply(self._init_weights)
|
| 142 |
+
|
| 143 |
+
def _init_weights(self, module):
|
| 144 |
+
if isinstance(module, nn.Linear):
|
| 145 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 146 |
+
if module.bias is not None:
|
| 147 |
+
torch.nn.init.zeros_(module.bias)
|
| 148 |
+
elif isinstance(module, nn.Embedding):
|
| 149 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
| 150 |
+
|
| 151 |
+
def forward(self, idx, targets=None):
|
| 152 |
+
B, T = idx.size()
|
| 153 |
+
x = self.embed_tokens(idx)
|
| 154 |
+
|
| 155 |
+
for layer in self.layers:
|
| 156 |
+
x = layer(x)
|
| 157 |
+
|
| 158 |
+
x = self.norm(x)
|
| 159 |
+
logits = self.lm_head(x)
|
| 160 |
+
|
| 161 |
+
loss = None
|
| 162 |
+
if targets is not None:
|
| 163 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
| 164 |
+
|
| 165 |
+
return logits, loss
|
| 166 |
+
|
| 167 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
| 168 |
+
for _ in range(max_new_tokens):
|
| 169 |
+
idx_cond = idx[:, -self.config.block_size:]
|
| 170 |
+
logits, _ = self(idx_cond)
|
| 171 |
+
logits = logits[:, -1, :] / temperature
|
| 172 |
+
|
| 173 |
+
if top_k is not None:
|
| 174 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
| 175 |
+
logits[logits < v[:, [-1]]] = float('-inf')
|
| 176 |
+
|
| 177 |
+
probs = F.softmax(logits, dim=-1)
|
| 178 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
| 179 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
| 180 |
+
return idx
|
| 181 |
+
|
| 182 |
# Initialize model and tokenizer
|
| 183 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 184 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
| 185 |
model = SmolLM2(SmolLM2Config())
|
| 186 |
|
| 187 |
# Load trained weights
|
| 188 |
+
checkpoint = torch.load('checkpoint_step_5000.pt', map_location=device)
|
|
|
|
| 189 |
model.load_state_dict(checkpoint['model_state_dict'])
|
| 190 |
model.to(device)
|
| 191 |
model.eval()
|
| 192 |
|
| 193 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
| 194 |
"""Generate text from a prompt"""
|
|
|
|
| 195 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
| 196 |
|
|
|
|
| 197 |
with torch.no_grad():
|
| 198 |
output_ids = model.generate(
|
| 199 |
input_ids,
|
|
|
|
| 202 |
top_k=top_k
|
| 203 |
)
|
| 204 |
|
| 205 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 206 |
|
| 207 |
# Gradio interface
|
| 208 |
def gradio_interface(prompt, max_length, temperature, top_k):
|
|
|
|
| 221 |
description="Generate text using the SmolLM2 model"
|
| 222 |
)
|
| 223 |
|
|
|
|
|
|
|
|
|
|
| 224 |
if __name__ == "__main__":
|
| 225 |
iface.launch()
|