Upload 3 files
Browse files
app.py
CHANGED
@@ -1,28 +1,199 @@
|
|
1 |
import torch
|
|
|
|
|
|
|
|
|
2 |
from transformers import AutoTokenizer
|
3 |
-
from model import SmolLM2, SmolLM2Config
|
4 |
import gradio as gr
|
5 |
import zipfile
|
6 |
import io
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
# Initialize model and tokenizer
|
9 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
10 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
11 |
model = SmolLM2(SmolLM2Config())
|
12 |
|
13 |
# Load trained weights
|
14 |
-
|
15 |
-
checkpoint = torch.load('checkpoint_step_5000.pt', map_location=device) # Adjust path as needed
|
16 |
model.load_state_dict(checkpoint['model_state_dict'])
|
17 |
model.to(device)
|
18 |
model.eval()
|
19 |
|
20 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
21 |
"""Generate text from a prompt"""
|
22 |
-
# Tokenize the prompt
|
23 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
24 |
|
25 |
-
# Generate
|
26 |
with torch.no_grad():
|
27 |
output_ids = model.generate(
|
28 |
input_ids,
|
@@ -31,9 +202,7 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
|
31 |
top_k=top_k
|
32 |
)
|
33 |
|
34 |
-
|
35 |
-
generated_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
36 |
-
return generated_text
|
37 |
|
38 |
# Gradio interface
|
39 |
def gradio_interface(prompt, max_length, temperature, top_k):
|
@@ -52,8 +221,5 @@ iface = gr.Interface(
|
|
52 |
description="Generate text using the SmolLM2 model"
|
53 |
)
|
54 |
|
55 |
-
# For Hugging Face deployment
|
56 |
-
app = gr.mount_gradio_app(app, iface)
|
57 |
-
|
58 |
if __name__ == "__main__":
|
59 |
iface.launch()
|
|
|
1 |
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
from transformers import AutoTokenizer
|
|
|
7 |
import gradio as gr
|
8 |
import zipfile
|
9 |
import io
|
10 |
|
11 |
+
# Copy all model classes here
|
12 |
+
class LlamaRMSNorm(nn.Module):
|
13 |
+
def __init__(self, hidden_size, eps=1e-6):
|
14 |
+
super().__init__()
|
15 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
16 |
+
self.eps = eps
|
17 |
+
|
18 |
+
def forward(self, x):
|
19 |
+
rms = torch.sqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps)
|
20 |
+
x_norm = x / rms
|
21 |
+
return self.weight * x_norm
|
22 |
+
|
23 |
+
class LlamaRotaryEmbedding(nn.Module):
|
24 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000):
|
25 |
+
super().__init__()
|
26 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
27 |
+
self.register_buffer("inv_freq", inv_freq)
|
28 |
+
self.max_position_embeddings = max_position_embeddings
|
29 |
+
self.dim = dim
|
30 |
+
|
31 |
+
def forward(self, x, seq_len):
|
32 |
+
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
|
33 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
34 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
35 |
+
return emb
|
36 |
+
|
37 |
+
def rotate_half(x):
|
38 |
+
x1, x2 = x[..., :x.shape[-1]//2], x[..., x.shape[-1]//2:]
|
39 |
+
return torch.cat((-x2, x1), dim=-1)
|
40 |
+
|
41 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids):
|
42 |
+
cos = cos.unsqueeze(0).unsqueeze(0)
|
43 |
+
sin = sin.unsqueeze(0).unsqueeze(0)
|
44 |
+
cos = cos.expand(q.shape[0], q.shape[1], -1, -1)
|
45 |
+
sin = sin.expand(k.shape[0], k.shape[1], -1, -1)
|
46 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
47 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
48 |
+
return q_embed, k_embed
|
49 |
+
|
50 |
+
class LlamaSdpaAttention(nn.Module):
|
51 |
+
def __init__(self, config):
|
52 |
+
super().__init__()
|
53 |
+
self.hidden_size = config.n_embd
|
54 |
+
self.num_heads = config.n_head
|
55 |
+
self.head_dim = config.n_embd // config.n_head
|
56 |
+
self.num_key_value_heads = config.n_head // 3
|
57 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
58 |
+
|
59 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
60 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
61 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
62 |
+
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
63 |
+
self.rotary_emb = LlamaRotaryEmbedding(self.head_dim)
|
64 |
+
|
65 |
+
def forward(self, x, attention_mask=None):
|
66 |
+
B, T, C = x.size()
|
67 |
+
q = self.q_proj(x).view(B, T, self.num_heads, self.head_dim)
|
68 |
+
k = self.k_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
|
69 |
+
v = self.v_proj(x).view(B, T, self.num_key_value_heads, self.head_dim)
|
70 |
+
|
71 |
+
k = k.repeat_interleave(self.num_key_value_groups, dim=2)
|
72 |
+
v = v.repeat_interleave(self.num_key_value_groups, dim=2)
|
73 |
+
|
74 |
+
q = q.transpose(1, 2)
|
75 |
+
k = k.transpose(1, 2)
|
76 |
+
v = v.transpose(1, 2)
|
77 |
+
|
78 |
+
rotary_emb = self.rotary_emb(x, T)
|
79 |
+
cos, sin = rotary_emb.cos(), rotary_emb.sin()
|
80 |
+
q, k = apply_rotary_pos_emb(q, k, cos, sin, None)
|
81 |
+
|
82 |
+
out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
|
83 |
+
out = out.transpose(1, 2).contiguous().view(B, T, C)
|
84 |
+
return self.o_proj(out)
|
85 |
+
|
86 |
+
class LlamaMLP(nn.Module):
|
87 |
+
def __init__(self, config):
|
88 |
+
super().__init__()
|
89 |
+
self.gate_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
|
90 |
+
self.up_proj = nn.Linear(config.n_embd, config.intermediate_size, bias=False)
|
91 |
+
self.down_proj = nn.Linear(config.intermediate_size, config.n_embd, bias=False)
|
92 |
+
self.act_fn = nn.SiLU()
|
93 |
+
|
94 |
+
def forward(self, x):
|
95 |
+
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
96 |
+
|
97 |
+
class LlamaDecoderLayer(nn.Module):
|
98 |
+
def __init__(self, config):
|
99 |
+
super().__init__()
|
100 |
+
self.input_layernorm = LlamaRMSNorm(config.n_embd)
|
101 |
+
self.self_attn = LlamaSdpaAttention(config)
|
102 |
+
self.post_attention_layernorm = LlamaRMSNorm(config.n_embd)
|
103 |
+
self.mlp = LlamaMLP(config)
|
104 |
+
|
105 |
+
def forward(self, x):
|
106 |
+
residual = x
|
107 |
+
x = self.input_layernorm(x)
|
108 |
+
x = self.self_attn(x)
|
109 |
+
x = residual + x
|
110 |
+
|
111 |
+
residual = x
|
112 |
+
x = self.post_attention_layernorm(x)
|
113 |
+
x = self.mlp(x)
|
114 |
+
x = residual + x
|
115 |
+
return x
|
116 |
+
|
117 |
+
@dataclass
|
118 |
+
class SmolLM2Config:
|
119 |
+
block_size: int = 2048
|
120 |
+
vocab_size: int = 49152
|
121 |
+
n_layer: int = 30
|
122 |
+
n_head: int = 9
|
123 |
+
n_embd: int = 576
|
124 |
+
intermediate_size: int = 1536
|
125 |
+
num_key_value_heads: int = 3
|
126 |
+
rms_norm_eps: float = 1e-5
|
127 |
+
rope_theta: float = 10000.0
|
128 |
+
initializer_range: float = 0.041666666666666664
|
129 |
+
use_cache: bool = True
|
130 |
+
|
131 |
+
class SmolLM2(nn.Module):
|
132 |
+
def __init__(self, config):
|
133 |
+
super().__init__()
|
134 |
+
self.config = config
|
135 |
+
|
136 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.n_embd)
|
137 |
+
self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.n_layer)])
|
138 |
+
self.norm = LlamaRMSNorm(config.n_embd, eps=config.rms_norm_eps)
|
139 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
140 |
+
self.embed_tokens.weight = self.lm_head.weight
|
141 |
+
self.apply(self._init_weights)
|
142 |
+
|
143 |
+
def _init_weights(self, module):
|
144 |
+
if isinstance(module, nn.Linear):
|
145 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
146 |
+
if module.bias is not None:
|
147 |
+
torch.nn.init.zeros_(module.bias)
|
148 |
+
elif isinstance(module, nn.Embedding):
|
149 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=self.config.initializer_range)
|
150 |
+
|
151 |
+
def forward(self, idx, targets=None):
|
152 |
+
B, T = idx.size()
|
153 |
+
x = self.embed_tokens(idx)
|
154 |
+
|
155 |
+
for layer in self.layers:
|
156 |
+
x = layer(x)
|
157 |
+
|
158 |
+
x = self.norm(x)
|
159 |
+
logits = self.lm_head(x)
|
160 |
+
|
161 |
+
loss = None
|
162 |
+
if targets is not None:
|
163 |
+
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1))
|
164 |
+
|
165 |
+
return logits, loss
|
166 |
+
|
167 |
+
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
|
168 |
+
for _ in range(max_new_tokens):
|
169 |
+
idx_cond = idx[:, -self.config.block_size:]
|
170 |
+
logits, _ = self(idx_cond)
|
171 |
+
logits = logits[:, -1, :] / temperature
|
172 |
+
|
173 |
+
if top_k is not None:
|
174 |
+
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
175 |
+
logits[logits < v[:, [-1]]] = float('-inf')
|
176 |
+
|
177 |
+
probs = F.softmax(logits, dim=-1)
|
178 |
+
idx_next = torch.multinomial(probs, num_samples=1)
|
179 |
+
idx = torch.cat((idx, idx_next), dim=1)
|
180 |
+
return idx
|
181 |
+
|
182 |
# Initialize model and tokenizer
|
183 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
184 |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceTB/cosmo2-tokenizer")
|
185 |
model = SmolLM2(SmolLM2Config())
|
186 |
|
187 |
# Load trained weights
|
188 |
+
checkpoint = torch.load('checkpoint_step_5000.pt', map_location=device)
|
|
|
189 |
model.load_state_dict(checkpoint['model_state_dict'])
|
190 |
model.to(device)
|
191 |
model.eval()
|
192 |
|
193 |
def generate_text(prompt, max_length=100, temperature=0.7, top_k=50):
|
194 |
"""Generate text from a prompt"""
|
|
|
195 |
input_ids = tokenizer.encode(prompt, return_tensors='pt').to(device)
|
196 |
|
|
|
197 |
with torch.no_grad():
|
198 |
output_ids = model.generate(
|
199 |
input_ids,
|
|
|
202 |
top_k=top_k
|
203 |
)
|
204 |
|
205 |
+
return tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
|
|
|
|
206 |
|
207 |
# Gradio interface
|
208 |
def gradio_interface(prompt, max_length, temperature, top_k):
|
|
|
221 |
description="Generate text using the SmolLM2 model"
|
222 |
)
|
223 |
|
|
|
|
|
|
|
224 |
if __name__ == "__main__":
|
225 |
iface.launch()
|