added changes to app to fix model loading errors
Browse files
app.py
CHANGED
@@ -33,7 +33,22 @@ model.fc = nn.Linear(model.fc.in_features, 1000)
|
|
33 |
model.load_state_dict(torch.load("model.pth", map_location=device)) # Load the trained weights (.pth)
|
34 |
model.to(device) # Move model to CPU (even if you have a GPU)
|
35 |
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
# Define the transformation required for the input image
|
39 |
transform = transforms.Compose([
|
|
|
33 |
model.load_state_dict(torch.load("model.pth", map_location=device)) # Load the trained weights (.pth)
|
34 |
model.to(device) # Move model to CPU (even if you have a GPU)
|
35 |
|
36 |
+
checkpoint = torch.load('model.pth', map_location='cpu')
|
37 |
+
|
38 |
+
# Load the model weights
|
39 |
+
model.load_state_dict(checkpoint['model_state_dict'])
|
40 |
+
|
41 |
+
# If you need to resume training, load optimizer and scheduler states
|
42 |
+
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
|
43 |
+
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
|
44 |
+
|
45 |
+
# If you want to resume from a specific epoch
|
46 |
+
epoch = checkpoint['epoch']
|
47 |
+
|
48 |
+
# Set the model to evaluation mode (for inference)
|
49 |
+
model.eval()
|
50 |
+
|
51 |
+
# model.eval() # Set model to evaluation mode
|
52 |
|
53 |
# Define the transformation required for the input image
|
54 |
transform = transforms.Compose([
|