anjikum commited on
Commit
4ec6f83
·
verified ·
1 Parent(s): eee79b0

added params to app

Browse files
Files changed (1) hide show
  1. app.py +20 -1
app.py CHANGED
@@ -1,13 +1,32 @@
1
  import torch
 
2
  import torchvision.transforms as transforms
3
  from torchvision import models
4
  from PIL import Image
5
  import gradio as gr
6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  # Force CPU usage
8
  device = torch.device('cpu')
9
 
10
- # Load your trained ResNet-50 model
11
  model = models.resnet50(pretrained=False) # Load the ResNet-50 architecture
12
  model.load_state_dict(torch.load("model.pth", map_location=device)) # Load the trained weights (.pth)
13
  model.to(device) # Move model to CPU (even if you have a GPU)
 
1
  import torch
2
+ import torch.nn as nn
3
  import torchvision.transforms as transforms
4
  from torchvision import models
5
  from PIL import Image
6
  import gradio as gr
7
 
8
+ # Define custom class 'Params' if used
9
+ class Params:
10
+ def __init__(self):
11
+ self.batch_size = 128 # You can adjust this based on your GPU memory
12
+ self.name = "resnet_50_sgd" # Rename to reflect ResNet-50
13
+ self.workers = 4 # Number of DataLoader workers
14
+ self.lr = 0.1 # Learning rate for SGD optimizer
15
+ self.momentum = 0.9 # Momentum for SGD
16
+ self.weight_decay = 1e-4 # Weight decay for regularization
17
+ self.lr_step_size = 30 # Step size for learning rate decay
18
+ self.lr_gamma = 0.1 # Gamma factor for learning rate decay
19
+
20
+ def __repr__(self):
21
+ return str(self.__dict__)
22
+
23
+ def __eq__(self, other):
24
+ return self.__dict__ == other.__dict__
25
+
26
  # Force CPU usage
27
  device = torch.device('cpu')
28
 
29
+ # Load your trained ResNet-50 model (or any custom architecture)
30
  model = models.resnet50(pretrained=False) # Load the ResNet-50 architecture
31
  model.load_state_dict(torch.load("model.pth", map_location=device)) # Load the trained weights (.pth)
32
  model.to(device) # Move model to CPU (even if you have a GPU)