Spaces:
Running
Running
from typing import get_args | |
import cv2 | |
import numpy as np | |
import streamlit as st | |
from PIL import Image | |
from fast_alpr import ALPR | |
from fast_alpr.default_detector import PlateDetectorModel | |
from fast_alpr.default_ocr import OcrModel | |
# Default models | |
DETECTOR_MODELS = list(get_args(PlateDetectorModel)) | |
OCR_MODELS = list(get_args(OcrModel)) | |
# Put global OCR first | |
OCR_MODELS.remove("global-plates-mobile-vit-v2-model") | |
OCR_MODELS.insert(0, "global-plates-mobile-vit-v2-model") | |
st.title("FastALPR Demo") | |
st.write("An automatic license plate recognition (ALPR) system with customizable detector and OCR models.") | |
st.markdown(""" | |
[FastALPR](https://github.com/ankandrew/fast-alpr) library uses [open-image-models](https://github.com/ankandrew/open-image-models) | |
for plate detection and [fast-plate-ocr](https://github.com/ankandrew/fast-plate-ocr) for optical character recognition (**OCR**). | |
""") | |
# Sidebar for selecting models | |
detector_model = st.sidebar.selectbox("Choose Detector Model", DETECTOR_MODELS) | |
ocr_model = st.sidebar.selectbox("Choose OCR Model", OCR_MODELS) | |
# Load image | |
uploaded_file = st.file_uploader("Upload an image of a vehicle with a license plate", type=["jpg", "jpeg", "png"]) | |
if uploaded_file is not None: | |
# Convert uploaded file to a format compatible with OpenCV | |
img = Image.open(uploaded_file) | |
img_array = np.array(img.convert("RGB")) # Convert to RGB if needed | |
st.image(img, caption="Uploaded Image", use_container_width=True) | |
# Initialize ALPR with selected models | |
alpr = ALPR(detector_model=detector_model, ocr_model=ocr_model) | |
# Run ALPR on the uploaded image | |
st.write("Processing...") | |
results = alpr.predict(img_array) | |
# Draw predictions on the image | |
annotated_img_array = alpr.draw_predictions(img_array) | |
# Convert the annotated image back to display in Streamlit | |
annotated_img = Image.fromarray(annotated_img_array) | |
st.image(annotated_img, caption="Annotated Image with OCR Results", use_container_width=True) | |
# Display OCR results in text format for more detail | |
if results: | |
st.write("**OCR Results:**") | |
for result in results: | |
# Access the detection and OCR attributes from ALPRResult | |
plate_text = result.ocr.text if result.ocr else "N/A" | |
plate_confidence = result.ocr.confidence if result.ocr else 0.0 | |
st.write(f"- Detected Plate: `{plate_text}` with confidence `{plate_confidence:.2f}`") | |
else: | |
st.write("No license plate detected 😔.") | |
else: | |
st.write("Please upload an image to continue.") |