Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import get_args
|
2 |
+
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
import streamlit as st
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from fast_alpr import ALPR
|
9 |
+
from fast_alpr.default_detector import PlateDetectorModel
|
10 |
+
from fast_alpr.default_ocr import OcrModel
|
11 |
+
|
12 |
+
# Default models
|
13 |
+
DETECTOR_MODELS = list(get_args(PlateDetectorModel))
|
14 |
+
OCR_MODELS = list(get_args(OcrModel))
|
15 |
+
# Put european OCR first
|
16 |
+
OCR_MODELS.remove("european-plates-mobile-vit-v2-model")
|
17 |
+
OCR_MODELS.insert(0, "european-plates-mobile-vit-v2-model")
|
18 |
+
|
19 |
+
st.title("FastALPR Demo")
|
20 |
+
st.write("An automatic license plate recognition (ALPR) system with customizable detector and OCR models.")
|
21 |
+
|
22 |
+
# Sidebar for selecting models
|
23 |
+
detector_model = st.sidebar.selectbox("Choose Detector Model", DETECTOR_MODELS)
|
24 |
+
ocr_model = st.sidebar.selectbox("Choose OCR Model", OCR_MODELS)
|
25 |
+
|
26 |
+
# Load image
|
27 |
+
uploaded_file = st.file_uploader("Upload an image of a vehicle with a license plate", type=["jpg", "jpeg", "png"])
|
28 |
+
|
29 |
+
if uploaded_file is not None:
|
30 |
+
# Convert uploaded file to a format compatible with OpenCV
|
31 |
+
img = Image.open(uploaded_file)
|
32 |
+
img_array = np.array(img.convert("RGB")) # Convert to RGB if needed
|
33 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
34 |
+
|
35 |
+
# Initialize ALPR with selected models
|
36 |
+
alpr = ALPR(detector_model=detector_model, ocr_model=ocr_model)
|
37 |
+
|
38 |
+
# Run ALPR on the uploaded image
|
39 |
+
st.write("Processing...")
|
40 |
+
results = alpr.predict(img_array)
|
41 |
+
|
42 |
+
# Draw predictions on the image
|
43 |
+
annotated_img_array = alpr.draw_predictions(img_array)
|
44 |
+
|
45 |
+
# Convert the annotated image back to display in Streamlit
|
46 |
+
annotated_img = Image.fromarray(cv2.cvtColor(annotated_img_array, cv2.COLOR_BGR2RGB))
|
47 |
+
st.image(annotated_img, caption="Annotated Image with OCR Results", use_column_width=True)
|
48 |
+
|
49 |
+
# Display OCR results in text format for more detail
|
50 |
+
if results:
|
51 |
+
st.write("**OCR Results:**")
|
52 |
+
for result in results:
|
53 |
+
st.write(f"- Detected Plate: `{result['text']}` with confidence `{result['confidence']:.2f}`")
|
54 |
+
else:
|
55 |
+
st.write("No license plate detected.")
|
56 |
+
else:
|
57 |
+
st.write("Please upload an image to continue.")
|